В конструкциях дорожной одежды очень важна совместимость материалов и их свойств. Например, на гидроизоляционный слой из полиуретанов или резиноподобных материалов можно укладывать только литой асфальт. Если на такую гидроизоляцию положить уплотняемый асфальтобетон, при уплотнении катком образуются трещины, что приводит к быстрому разрушению покрытия.
Какими бы плотными асфальтобетоны ни были, они пропускают воду. По всем правилам устройства гидроизоляции в местах примыканий к элементам мостового полотна ее края поднимают на бортики ограждений и деформационные швы, создавая так называемое «корыто». Вода, которая проникла на уровень гидроизоляции, замерзая и оттаивая, разрушает дорожную одежду.
Чтобы избежать такого явления, разработана система отвода воды, которая включает дренажные трубки, выведенные до верхнего уровня гидроизоляционного слоя, и дренажные каналы из пористого материала, расположенные в пониженных местах вдоль и поперек сооружения, которые собирают воду и отводят ее через дренажные трубки.
Дренажный материал размещается в толще нижнего слоя асфальтобетонного покрытия либо в защитном слое, если такой предусмотрен проектом.
В настоящее время выпускаются специальные брикеты, которые раскладываются над дренажными трубками и значительно облегчают дренирование. [122–124]
Глава 3
Гидроизоляционные работы на АЭС
На строительстве ЛАЭС техническим советом Северного управления строительства были разработаны комплексные мероприятия по техническим решениям и организации производства гидроизоляционных работ. В них большое внимание уделялось внедрению новых материалов и технологий, среди которых следует назвать устройство гидроизоляции на основе полимербитумных мастик, полимерцеметного раствора, профилированных полиэтиленовых листов и изопласта.
Одним из основных технических решений стало применение комплексной механизации при устройстве гидроизоляционной и антикоррозийной защиты. Она выполнялась на основе централизованного приготовления горячих полимербитумных мастик трех марок и холодной полимербитумной мастики БК (битумно-кукерсольная) в стационарной комплексной установке КУКС-3.
Такая технология эффективна при больших объемах работ. Она обеспечивает высокую производительность труда и должное качество продукции. Технология предусматривала применение цилиндрических смесителей с двумя угловыми пропеллерными мешалками, валы которых вращались в разные стороны.
Приготовление холодных мастик выполнялось непрерывным смешиванием под разным давлением расплавленного битума с температурой 160 градусов и лака-кукерсоля с температурой 10 градусов в контродиффузированной полости и пропускной трубе соплового смесителя с последующим поступлением потока в струйный диспергатор и накопительный цилиндрический смеситель.
Такая технология повысила производительность и исключила возможность воспламенения при смешивании жидкостей с разными температурами кипения.
Доставлялись приготовленные горячие мастики на объекты агрегатом АГКР-5КС на прицепах МАЗ-5243 автомашиной ЗИЛ, за которой закреплялись 3–4 агрегата. На стройплощадке мастика подавалась в сопло под давлением 1–2 атмосферы и наносилась двумя наметными слоями на огрунтованную поверхность под стеклоткань и на нее, а также на поверхности без стеклоткани. В перерывах однородность мастик обеспечивалась в котле смесителя угловой пропеллерной мешалкой.
На строительстве Игналинской АЭС для повышения надежности и качества разогреваемых полимербитумных мастик при транспортировке на объекты агрегатов с порционной загрузкой АГКР выполнялось мастиковозом В-1С. Его особенности — нагреваемая полость, расположенная под цистерной, ленточно-лопастной побудитель внутри цистерны, а также четыре позиционные гидрораспределителя в гидросистеме к гидроприводам.
Такое техническое устройство может с успехом применяться и в дорожном строительстве для нанесения полимербитумных эмульсий под асфальтовое покрытие.
При гидроизоляции межэтажных перекрытий реакторного блока и деаэраторной этажерки подача мастик осуществлялась по рециркуляционным стоякам, а на высоту 25–30 м — по гибким шлангам. Нанесение мастики выпонялось наметными слоями по 2–5 мм под накатываемые рулоны стеклоткани с опережением рулона 10-200 мм в зависимости от погоды. Гидроизоляция реакторных блоков, деаэраторной этажерки и турбинного зала главного здания ЛАЭС выполнена горячей полимербитумной мастикой толщиной 8-10 мм многослойным последовательным нанесением с армирующим слоем или без армирования на подготовленную изолируемую поверхность. Горизонтальная гидроизоляция под плиту реакторного блока, блоков Б, В, Г и приемника для сбора трапных вод выполнялась из двух слоев армирующей стеклоткани и трех наметных слоев полимербитумной мастики. В местах примыканий и сопряжений с закладными деталями покрытие усиливалось армирующими слоями стеклоткани и двумя слоями мастики, а в деформационных швах — двумя армирующими слоями и тремя слоями мастики.
Читать дальше
Конец ознакомительного отрывка
Купить книгу