В 1947 году увидела свет книга С. Н. Давиденкова «Эволюционно-генетические проблемы в невропатологии». Автор говорил о наследственных факторах, определяющих особенности высшей нервной деятельности, ее нормальные и аномальные проявления. Это событие академик Леон Абгарович Орбели, один из крупнейших наших физиологов, расценивал как настоящее торжество советской науки.
Да, не только цвет глаз, кожи, волос, не только рост и телосложение завещаются предками потомкам. Бывает врожденная глухонемота. Передаются из поколения в поколение также черточки характера, темперамента; наследуются маниакально-депрессивные психозы, шизофрения, некоторые иные душевные расстройства.
Понятно, сколь велико значение генетики в познании тайн души и тела. Нащупав молекулярные пружины удивительного копировального механизма, заключенного в живой клетке, ученые смогут активно влиять на его деятельность, преобразуя живую природу по своему усмотрению. Попытки редактировать наследственную программу организмов в практических целях уже предприняты.
В 1925 году в Ленинградском институте радия Г. А. Надсон и Г. С. Филиппов сделали важное открытие: ионизирующее излучение способно вызывать мутации. Опыты проводились с дрожжевыми грибками. Два года спустя тот же эффект был обнаружен американцем Г. Меллером в экспериментах с дрозофилой. А в 1928–1930 годах наши ученые А. А. Сапегин и Л. Н. Делоне впервые применили рентгеновскую радиацию в селекционных целях. Им удавалось резко изменить генотипы пшениц. В 1934 году появилась основополагающая статья Андрея Афанасьевича Сапегина «Рентгеномутации как источник новых сортов сельхозрастений».
Нынче опробованы и используются самые разнообразные излучения как волновые, так и корпускулярные (гамма- и рентгеновы, нейтронные и протонные). Можно добиться, чтобы порожденные ими изменения в структуре хромосом наблюдалисы в тысячу раз чаще, чем если бы они возникали самопроизвольно в естественных условиях. Так, искусственно вызывая мутации, осуществляя искусственный отбор, человек тысячекратно ускоряет эволюцию.
В 1958 году в Институте биофизики АН СССР подверглись обстрелу гамма-квантами из кобальтовой «пушки» бобовые культуры. Потом провели искусственный отбор: ведь мутации, вызванные жесткой радиацией, в подавляющем большинстве своем вредоносны. Лишь в 1–2 случаях из 1000 они полезны для вида. Усилить эти преимущества можно последующим скрещиванием. Так были выведены новые сорта сои (один из них, «чудо Грузии», дает на 11–12 центнеров с гектара больше, чем стандарт) и фасоли («радиола-1175», «радиола-1177», урожайность которых столь же значительно — в полтора-два раза — выше общепринятой нормы).
В 1964 году на совещании, созванном Государственным комитетом по использованию атомной энергии, Академией наук и Министерством сельского хозяйства СССР, демонстрировались многочисленные мутантные формы пшениц, кукурузы, томатов, картофеля, моркови, хлопчатника и других культур — все они получены с помощью новых физических и химических средств, позволяющих вносить коррективы в наследственную программу организма.
Не только лучевое воздействие способно изменить наследственную конституцию организма.
Три четверти века назад профессор Московского университета И. И. Герасимов, изучая спирогиру, нашел, что на холоде и в присутствии наркотиков эта нитчатая зеленая водоросль ведет себя несколько необычно. В процессе деления та или иная ее клетка может образовать две неравноценные: в одной совсем нет ядра, и она вскоре погибает; зато в другой их целых два, причем оба затем сливаются, давая удвоенный комплект хромосом. Подобное явление (полиплоидия) не редкость.
Скажем, у дикой пшеницы в каждой клетке содержится 14 хромосом, у культурных же ее сородичей — по 28 (твердые сорта, именно они наиболее ценны с хозяйственной точки зрения) и даже по 42 (мягкие). В первом случае (7 хромосом от отца и столько же от матери) растение называется диплоидом; во втором (четырежды семь) — тетраплоидом; в третьем (шесть раз по семь) — гексаплоидом. Как видно, количество хромосом кратно их единичному (гаплоидному) набору, поступившему в оплодотворенную клетку из родительской гаметы. В двух последних примерах оно вдвое и втрое больше нормального — присущего диплоиду.
Такие аномалии, увеличивая резервы наследственной изменчивости, наделяют организм и его потомство большей генетической гибкостью, приспособляемостью, живучестью. Неспроста в самых неблагоприятных условиях заполярных тундр, бесплодных пустынь и высокогорных районов встречаются чаще всего именно полиплоиды.
Читать дальше