Рис. 5.3. Кривые блеска звезды IRC+00233 на длинах волн 2 и 4 микрона в момент ее покрытия Луной. Крестики – данные наблюдений. Сплошная кривая – теоретическая модель для звезды углового размера 0,0045″. Колебания блеска вызваны эффектом дифракции света на краю лунного диска: чем меньше угловой размер звезды, тем сильнее дифракционные колебания блеска. Из работы Р. М. Harvey, A. Oldag (Техасский университет), 2007 г.
Особенно тесно рентгеновские источники расположены на небе в направлении галактического центра. К счастью, через этот район время от времени проходит Луна. В 1971 г. в ходе ракетного эксперимента удалось определить координаты близкого к галактическому центру рентгеновского источника GX3+1 с точностью 25″х1″. Рентгеновским телескопам такая точность стала доступна лишь в конце 1970-х гг.
А еще раньше, в 1950-е гг., аналогичная ситуация сложилась в радиоастрономии. В то время радиотелескопы в метровом диапазоне имели угловое разрешение около 10°. Поэтому радиоастрономы часто использовали методы лунных покрытий для определения точных координат источников. В наше время на радиоинтерферометрах достигнута фантастическая разрешающая способность – 0,0001″, но Луна по-прежнему остается в арсенале радиоастрономов. Например, в последние годы при наблюдении радиоизлучения межзвездных молекул метод лунных покрытий позволил детально исследовать ядро нашей Галактики.
Начиная с 1973 г. Луна стала выступать в новой роли: американский радиоастрономический спутник «Эксплорер-49», выйдя на окололунную орбиту, развернул 230-метровые антенны и приступил к исследованию низкочастотного радиоизлучения Солнца, Юпитера и других объектов, закрываясь с помощью Луны от радиошумов земного происхождения. Заметим, что при наблюдении с борта искусственных спутников Земли и Луны метод лунных покрытий удается распространить практически на все небо. Первый опыт работы в радиотени Луны оказался удачным, и теперь радиоастрономы готовятся к созданию постоянной обсерватории на обратной стороне Луны. Впрочем, я опасаюсь, что пока эта обсерватория будет создана, наши музыкальные радиостанции доберутся и до обратной стороны Луны.
Итак, Луна отлично исполняет роль заслонки. А на что еще она годится? В следующем разделе мы узнаем, что Луна – подходящая мишень для нейтрино; вполне вероятно, что скоро она будет использована в этом амплуа. А недавно у нее появилась еще одна роль: Луну можно использовать как зеркало. Мы не имеем в виду любительскую радиосвязь «через Луну», когда принимаются отраженные от нее радиоволны: это интересно, но не имеет отношения к планетам. Астрономы стали использовать Луну в роли зеркала следующим образом: во время лунных затмений на поверхность Луны попадает солнечный свет, прошедший сквозь земную атмосферу, затем он частично отражается от Луны, и астрономы на Земле могут его наблюдать. Яркость Луны во время затмения показывает, насколько прозрачна атмосфера Земли, велика ли в ней облачность; цвет лунной поверхности говорит о степени запыленности нашей атмосферы.
А совсем недавно лунное затмение позволило взглянуть на Землю как на экзопланету. Испанские астрофизики (E. Palle и др.) опубликовали результаты любопытной работы, которые увеличивают шанс успешного поиска внесолнечных планет с органической жизнью. Наблюдая частное лунное затмение 16 августа 2008 г., они получили спектр солнечного излучения, прошедший через атмосферу Земли и отраженный от Луны. В нем без особого труда обнаружились линии молекулярного кислорода, озона, водяного пара, метана и углекислого газа. Эти биомаркеры в своей совокупности однозначно свидетельствуют о наличии жизни на Земле. Такие же наблюдения за экзопланетами можно проводить в период их прохождения на фоне их звезды.
Рис. 5.4. Частное лунное затмение 16 августа 2008 г. Вверху слева: схема прохождения Луны через полутень и тень Земли. Указано всемирное время (UT). Справа: фото Луны в максимальной фазе затмения (21:10 UT). Внизу: схема (не в масштабе) прохождения солнечных лучей сквозь атмосферу Земли к Луне и отражения обратно к Земле.
Еще одно неожиданное использование Луны как зеркала произошло в области гамма-астрономии. В последние годы астрофизики интенсивно исследуют короткие гамма-всплески, источниками которых, по-видимому, служат самые удивительные космические объекты – нейтронные звезды, взрывы сверхновых и, возможно, что-то еще неизвестное. Аппаратура для регистрации гамма-лучей устанавливается на космических обсерваториях, поскольку сквозь земную атмосферу эти лучи не проходят. У каждого гамма-детектора есть определенный динамический диапазон: очень слабых вспышек он не замечает, а от слишком сильных его зашкаливает. Именно такая сверхсильная вспышка наблюдалась 27 декабря 2004 г. от источника SGR 1806-20, по-видимому, связанного с нейтронной звездой-магнитаром. Вспышку зафиксировали многие спутники, имеющие соответствующую аппаратуру, но измерить параметры самой яркой ее фазы не смогли, поскольку приборы «ослепли» от слишком сильного потока гамма-лучей. В это время российский спутник «Коронас-Ф» с гамма-спектрометром на борту оказался в тени Земли, и вспышка его не ослепила, но через несколько секунд он зафиксировал ослабленное эхо этой вспышки: лучи отразились от Луны! Их потока оказалось достаточно для измерений. Прав был Козьма Прутков: Луна полезнее Солнца!
Читать дальше
Конец ознакомительного отрывка
Купить книгу