Гамов придерживался мнения, что звезды попросту недостаточно горячи, чтобы стать той кухней, в которой готовились элементы, — он считал, что придумал идею получше: подходящей печью он считал саму Вселенную вскоре после Большого взрыва. Для изучения ядерных процессов в горячей ранней Вселенной Гамов обратился за помощью к двум молодым физикам — Ральфу Альферу и Роберту Херману. Они рассмотрели горячую смесь нуклонов, электронов и излучения, однородно заполняющую Вселенную. Когда температура падает до 1 миллиарда градусов, протоны и нейтроны могут соединиться, образуя ядра дейтерия (рис. 4.1). Последующие присоединения протонов и нейтронов быстро превращают дейтерий в гелий (ядра которого содержат по два протона и нейтрона). Однако на этом образование ядер фактически останавливается. Дело в том, что из-за некоторых особенностей ядерных сил стабильных ядер, состоящих из пяти нуклонов, не существует, а одновременное присоединение более чем одного нуклона крайне маловероятно. Это так называемый пятинуклонный провал. Расчеты показывают, что около 23 % нуклонов входят в состав ядер гелия, а почти все остальные остаются в форме водорода. Образуется также небольшое количество дейтерия и лития. [25] Более подробное обсуждение горячего огненного шара и образования элементов можно найти в классическом бестселлере Стивена Вайнберга "Первые три минуты" (РХД, 2000) (Steven Weinberg, The First Three Minutes , Bantam, New York, 1977).

Рис. 4.1.Простейшие атомные ядра.
Протоны и нейтроны обозначаются соответственно p и n .
Современный анализ, опирающийся на самые последние данные о ядерных реакциях и суперкомпьютерные модели, дает точные значения распространенности элементов после того, как они покинули космическое горнило. То, насколько хорошо результаты этих вычислений согласуются с астрономическими наблюдениями, весьма впечатляет. Астрономы могут определять химический состав далеких объектов, изучая спектр испущенного ими света. Теория горячего Большого взрыва твердо предсказывает, что ни одна галактика во Вселенной не должна содержать меньше двадцати трех процентов гелия: поскольку он производится в звездах, его первоначальная распространенность может только возрастать. И действительно, ни одной такой галактики до сих пор не обнаружено. Предсказанная распространенность дейтерия — чуть меньше одной десятитысячной, лития — менее одной миллиардной. Весьма примечательно, что столь сильно различающиеся значения подтверждаются наблюдениями. Можно было бы сказать, что 23 % гелия — это просто счастливая догадка, но вероятность случайного совпадения целого набора чисел крайне низка.
Но как обстоят дела с тяжелыми элементами? Несмотря на все усилия, Гамов и его команда не смогли найти мост через пятинуклонный провал. Тем временем по другую сторону Атлантики главный защитник модели стационарного состояния Фред Хойл разрабатывал альтернативную теорию происхождения элементов. Он знал, что звезды, которые подобно нашему Солнцу пережигают водород в гелий, недостаточно горячи для этой задачи. Но что происходит, когда звезда исчерпывает свой водород? Тогда она больше не может противостоять собственной гравитации, ядро звезды начинает сжиматься, а его плотность и температура возрастают. После того как в центре температура достигает 100 миллионов градусов, открывается новый канал ядерных реакций: три ядра гелия сливаются и образуют ядро углерода. Когда весь гелий в центральной области израсходован, звезда сжимается дальше, пока температура не поднимется настолько, чтобы запустить реакции ядерного горения углерода. По мере развития этого процесса образуется слоистая структура, в которой более тяжелые элементы находятся ближе к центру (поскольку для их приготовления требуются более высокие температуры). В звездах, подобных Солнцу, этот процесс не заходит слишком далеко, но в более массивных светилах он проделывает весь путь вплоть до образования железа. За этой точкой топлива для ядерного горения не остается. Не поддерживаемая больше ядерными реакциями внутренняя часть ядра звезды коллапсирует, достигая невероятной плотности и температуры около 10 миллиардов градусов. Это приводит к гигантскому взрыву, называемому вспышкой сверхновой , при котором все внешние слои, содержащие наработанные элементы, выбрасываются межзвездное пространство. Элементы тяжелее железа образуются во время коллапса и взрыва ядра. Обогащенный межзвездный газ служит сырьем для новых звезд и планетных систем. Получавшаяся по расчетам Хойла и его сотрудников распространенность тяжелых элементов хорошо согласовывалась с наблюдениями.
Читать дальше