Чтобы представить себе продвинутую машину ремонта клеток, представьте себе её и клетку увеличенными так, что атомы станут размером с маленький мраморный шарик. В этом масштабе самые маленькие инструменты машин ремонта будут примерно с кончики ваших пальцев; белок среднего размера, такой как гемоглобин, будет размером с печатающую машинку; а рибосома будет размером со стиральную машину. Устройство ремонта содержит простой компьютер размером с небольшой трактор, и условия для хранения информации и приводящей в движение энергии. Объём в десять метров в диагонали – размер 3-этажного дома, содержит все эти части и более этого. С частями размером с мраморные шарики, умещённые в этот объём, машины ремонта смогут делать сложные вещи.
Но такое ремонтное устройство не работает в одиночестве. Оно, также как многие его братья и сёстры, связано с большим компьютером посредством механических связей для передачи данных, диаметром как ваша рука. В этом масштабе, компьютер размером в кубический микрон с большой памятью заполнит объем в тридцать этажей в высоту и шириной как футбольное поле. Ремонтные устройства передают ему информацию, а он предаёт обратно общие инструкции. Объекты такие большие и сложные тем не менее достаточно маленькие: в этом масштабе сама клетка будет длинной в километр, вмещая в себе тысячи объёмов компьютеров размером в один кубический микрон, и миллионы раз вмещая в себе объём отдельного ремонтного устройства. В клетках много места!
Будут ли такие машины способны делать все необходимое для восстановления клеток? Существующие молекулярные машины демонстрируют способность проходить через ткани, входить в клетки, распознавать молекулярные структуры, и т. д., но остальные требования также важны. Будут ли машины ремонта работать достаточно быстро? Если они будут, будут ли они расходовать настолько много энергии, что изжарят пациента?
Самый обширный ремонт не может требовать значительно большего количества работы чем создание клетки с нуля. Однако молекулярные машины, работающие в пределах объёма клетки всё время делают именно это, строя новую клетку за время от десятков минут (для бактерий) до нескольких часов (для млекопитающих). Это показывает, что машины ремонта, занимающие несколько процентов от объёма клетки будут способны выполнить обширный ремонт за разумное время – дни или, самое большее, недели. Клетки могут выделить необходимое пространство. Даже клетки мозга всё ещё функционируют, когда мёртвый продукт жизнедеятельности, называемый липофускином (очевидно, продукт молекулярного повреждения клеток) заполняет более десяти процентов от их объёма.
Снабжать энергией устройства ремонта будет несложно: клетки естественным образом содержат химические вещества, которые дают энергию наномашинам. Природа также показывает, что машины ремонта можно охлаждать: в вашем теле клетки постоянно себя переделывают, и молодые животные стремительно растут, не изжаривая себя выделяемым теплом. Чтобы распорядиться теплом от подобного уровня активности ремонтных машин, потеть не придётся, а если даже и придётся, то не слишком сильно, если неделя потения – это цена здоровья.
Все эти сравнения машин ремонта с существующими биологическими механизмами поднимают вопрос того, будут ли машины ремонта способными улучшить нашу природу. Ремонт ДНК даёт ясную иллюстрацию.
Также, как неграмотная ""машина по ремонту книг" "могла бы распознавать и восстанавливать порванную страницу, также ферменты ремонта клетки могут распознавать и восстанавливать разрывы и перекрёстное связывание в ДНК. Исправление ошибок записи (или мутаций), тем не менее, требовало бы способности читать. В природе не существует таких машин ремонта, но их будет легко построить. Представьте себе три идентичные молекулы ДНК, каждая из которых содержит одну и ту же последовательность нуклеотидов. Теперь представьте себе что в каждой нити произведены мутации так, что случайным образом изменен порядок нескольких нуклеотидов. Каждая нить всё ещё кажется нормальной, если её взять саму по себе. Тем не менее машина ремонта могла бы сравнить каждую нить с другой, один сегмент за другим, и могла бы заметить, когда нуклеотид не соответствует своей паре. Заменяя неправильные нуклеотиды так, чтобы они соответствовали двум остальным таким образом исправит повреждение.
Этот метод не будет работать, если две нити мутируют в одном и том же месте. Представьте, что ДНК трех человеческих клеток были тяжело повреждены – после тысяч мутаций в каждой клетке один нуклеотид на миллион был изменён. Шанс, что наша трёх-ниточная процедура коррекции не сможет помочь делу в любой данной точке примерно один из миллиона миллионов. Но сравните пять ниток сразу и шансы станут один на миллион миллионов миллионов и т. д. Устройство, которое сравнивание множество нитей сделает возможность существования неисправимых ошибок практически нулевой.
Читать дальше