Как известно, суть гравитации, открытой И. Ньютоном в 1687 году, заключается в том, что два тела, обладающих некой массой, испытывают взаимное притяжение. Сила притяжения зависит от расстояния между телами. А это, в свою очередь, позволяет выдвинуть следующее предположение: если одно из тел меняет свое положение, меняется и сила притяжения, которое оно оказывает на другое тело.
Причем гравитационные эффекты протекают со скоростью, значительно большей, чем скорость света. Это на сегодняшний День известно точной если солнечный луч движется к нам 8 мин, то стоит Солнцу чуть изменить свое положение, как Земля чувствует изменение гравитационного поля немедленно.
Как же тогда примирить эту особенность с теорией Эйнштейна, которая утверждает, что именно скорость света есть абсолютно непреодолимый предел скорости? Сам Эйнштейн попытался найти решение этой проблемы в рамках общей теории относительности.
Суть ее для данного случая заключается в том, что согласно предположению Эйнштейна пространство не «плоское», как полагали раньше, а «изогнутое», деформированное под воздействием распределенных в нем массы и энергии.
Говоря другими словами, это означает, что наше трехмерное пространство загибается в некое четвертое измерение, подобно тому как двухмерный лист бумаги, если его скрутить, загибается в третье измерение.
Последствия этой теории не до конца осознаны и в наши. дни. Пространство и время потеряли свой абсолютный характер и, как мы уже говорили, уступили место новому понятию «пространства-времени». Изменения, вносимые при этом в наши геометрические понятия, одновременно носят и количественный и качественный характер.
Количественный — потому, что отныне необходимо учитывать искривленность пространства и времени, а это предполагает, к примеру, что сумма углов треугольника не обязательно должна быть равна 180° (пространственная геометрия Лобачевского), а, прямые параллельные линии согласно той же геометрии в некоторых случаях могут и пересекаться.
Качественный — в основном потому, что становится возможным соединить две точки совершенно различными способами, не имеющими друг с другом пространственно-временной связи. Именно на этих неожиданных путях вселенские «червяки» и прогрызают, свои необыкновенные «дыры».
Чтобы яснее понять, что же знаменуют собой те «различные способы», которыми можно соединить две точки, обратимся к наглядному примеру, приводимому тем же Стивеном Хокингом в его новой книге «Короткая история времени».
Понаблюдаем за самолетом, летящим над пересечённой местностью, предлагает нам английский ученый. Его траектория в небе. — прямая линия в трехмерном пространстве. А вот тень его следует по изогнутой траектории — в зависимости от рельефа — в двухмерном пространстве.
Точно так же Земля движется вокруг Солнца по прямой траектории в четырехмерном пространстве (три классических пространственных измерения плюс четвертая координата — время). А вот в трехмерном пространстве, отображение нашей планеты перемещается по изогнутой траектории — эллипсу, примерно так же, как движется по какой-то кривой тень самолета.
Из всего этого следует, что при помощи «червячной дыры», проходящей через четвертое пространственное измерение, можно изрядно сократить себе путь как в пространстве, так и во времени.
Существование таких кратчайших путей было предсказано теоретиками еще в 1916 году, но только двадцать лет спустя, когда Эйнштейн совместно с Розеном взялся за анализ своих же-уравнений, была выдвинута достаточно проработанная гипотеза о неком «мосте», который может связывать две точки более коротким путем, чем общепринято. Эта гипотеза получила название «мост Эйнштейна-Розена».
И вот в конце 50-х годов Джон Уилер впервые ясно обрисовал, где именно эти «мосты» в нашей Вселенной могут быть наведены. Ему же принадлежит и название «червячные дыры» по известной аналогии с ходами, проделываемыми плодовым червяком. Итак, согласно Уилеру, «червячные ходы», скорее всего, могут возникать в тех районах Вселенной, где пространство сильно изогнуто. То есть, говоря иначе, в районах, где существуют те самые «черные. дыры», о которых мы уже говорили.
При этом, Однако, Уилер и его последователи получили поначалу не слишком обнадеживающую картину. Во-первых, было неясно, как именно могла бы появиться «червоточина» — теория не находила механизмов для ее образования. Во-вторых, получалось, что два входа «червоточины» — теоретики назвали их «ртами» — могут сообщаться между собой весьма незначительное время. Не успеет «червоточина» появиться, как канал или «глотка», соединяющая оба «рта» тотчас должна мгновенно стянуться, давая в итоге две не сообщающиеся между собой «черные дыры».
Читать дальше