Главная причина, по которой невозможно заменить выборы процедурами статистических выборок, коренится в психологии масс. В демократическом обществе избирателю важно ощущать себя ответственным и деятельным участником процесса управления государством. Поэтому личное участие в выборах – существенная часть ритуалов демократической культуры. Точно так же, никакой гражданин в наше время не откажется от равной доли ответственности за все общественные дела, проявляющейся в равенстве избирательных прав. Эту ритуальную сторону общественной жизни трудно изменить. Многие полезные улучшения в избирательных процедурах – даже не посягающие на равноправие граждан – сталкиваются с сопротивлением просто потому, что они непривычны, о чем еще будет речь дальше.
В процессе выборов избиратели выражают свое отношение к тем или иным политическим деятелям или партиям, отдавая свой голос за того или иного кандидата или партию. Возникает вопрос – существуют ли какие-либо закономерности, описывающие распределение голосов избирателей между различными кандидатами или партиями? Если никаких закономерностей нет, то возможны любые соотношения между числами голосов, полученных кандидатами или партиями, а также между этими числами голосов и, например, явкой избирателей или числом недействительных бюллетеней. Если же существуют определенные закономерности в распределении голосов, то возможны не все варианты их распределения. На материале многих выборов в самых различных странах была выявлена статистическая связь, существующая между числами голосов, полученных на выборах различными кандидатами и партиями. Было установлено, что эта связь описывается следующей простой зависимостью:
Если по одной оси отложить в логарифмическом масштабе число голосов N(i), полученных каждым кандидатом, а по другой оси, также в логарифмическом масштабе, место i, занятое тем же кандидатом в ходе выборов, то полученные точки с достаточным приближением располагаются вдоль прямой линии:
ln N(i) = A - B x lni (1)
Справедливость приведенного уравнения была подтверждена в серии работ российских специалистов по математической политологии (Собянин, Суховольский, 1995), выполнивших анализ результатов выборов народных депутатов России в 1990 году, выборов Президента России в 1991 и 1996 годах, а также данных о выборах в ряде стран, начиная с выборов президента Франции в 1848 году, где победил Луи-Наполеон Бонапарт.
Этот математический результат нетривиален по своей природе. Специалистам – физикам, химикам, металлургам, демографам, экологам и представителям многих других областей знания, имеющих дело с большими массивами статистических данных, хорошо известно, что указанная численная закономерность носит общий характер и описывает ситуацию "свободной конкурентной борьбы" за распределение конечного количества каких-либо условных "благ". Оказывается, все мыслимое многообразие объектов, ситуаций и причинно-следственных связей не меняет характера этой зависимости: коль скоро имеется свободная конкуренция, ее результаты в любом случае укладываются на "логарифмическую прямую" – меняются лишь константа A и крутизна наклона прямой B. И наоборот: коль скоро имеются отклонения от условий свободной конкуренции, точки неминуемо отклоняются от прямой – и тем дальше, чем значительнее "факторы несвободы". Так, например, "конкуренция" городов за численность проживающего в них населения приводит в цивилизованных странах именно к такой зависимости. Между тем, в СССР такие города, как Москва, Ленинград и некоторые другие центры значительно отклонялись от "прямой свободной конкуренции" – вследствие административных ограничений, связанных с паспортным режимом. Аналогичным образом, свободная конкуренция приводит к той же зависимости между размерами крупнейших состояний и "местом", занимаемым их владельцами в списке таких состояний – разумеется, в тех частях света, где такие списки существуют. В точности таков же известный зоологам закон распределения хищников по массе (при отсутствии антропогенных факторов), и т.д.
Впервые закономерности этого рода установил итальянский социолог и математик В.Парето, занимаясь распределением жителей страны по величине их богатства; впоследствии к подобным же выводам пришел американский лингвист Дж.К. Ципф, изучая распределение частоты употребления слов в текстах. Различные варианты написанного выше соотношения носят название закона Ципфа – Парето. Методы анализа, связанные с изучением ранговых распределений, получили широкое распространение в лингвистике, наукометрии, экологии. Соблюдение соотношения (1) для избирательного процесса означает, что существует "свободная конкуренция" всех кандидатов, имеющих возможность беспрепятственно объяснять избирателям свои политические взгляды и политическую платформу.
Читать дальше