Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) — он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы — в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии , уже можно было подвергнуть окончательной проверке — математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.
Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.
Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года — со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее — и в этом мы были не одиноки — крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.
Некоторые эксперты, в том числе Газман, назвали нашу статью «первым полным и строгим доказательством» гипотезы, аргументируя это тем, что доказательство Гивенталя «было весьма тяжелым для понимания, а в ряде мест — неполным» [108] Andreas Gathmann, “Mirror Principle I,” Mathematical Reviews , MR1621573, 1999.
. Дэвид Кокс, математик из колледжа Амхерст, являвшийся соавтором (вместе с Кацом) книги «Зеркальная симметрия и алгебраическая геометрия», также заявил о том, что мы представили «первое полное доказательство гипотезы». [109] David Cox (Amherst College), interview with author, June 13, 2008.
С другой стороны, многие придерживались иного мнения, утверждая, что доказательство Гивенталя, опубликованное за год до нашего, было абсолютно полным и не содержало в себе каких-либо серьезных пробелов. Оставляя другим возможность продолжать дискуссию по этому поводу, сам я полагаю наилучшим объявить, что эти две статьи, сведенные вместе, представляют собой доказательство гипотезы о зеркальной симметрии, и оставить этот вопрос. Дальнейшее продолжение спора не имеет смысла, особенно в свете того, что в математике все еще полно нерешенных проблем, являющихся куда более достойным объектом для приложения усилий.
Итак, отбросив противоречия, зададимся вопросом: что же доказывают эти две статьи? Прежде всего, доказательство гипотезы о зеркальной симметрии подтвердило правильность формулы Канделаса для числа кривых определенного порядка. Но на самом деле наше доказательство было шире. Формула Канделаса была применима для подсчета числа кривых только на трехмерной поверхности пятого порядка, тогда как наши доказательства можно было использовать для гораздо более широкого класса многообразий Калаби-Яу, в том числе и для тех многообразий, к которым проявляют интерес физики, а также для других объектов, таких как векторные расслоения, о которых пойдет речь в девятой главе. Более того, наше обобщение позволяло использовать гипотезу о зеркальной симметрии не только для подсчета кривых, но и для получения других геометрических характеристик.
Читать дальше