Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1984 году Строминджер и Виттен начали активно работать над решением задачи о числе поколений и в конце концов обратились ко мне с вопросом о существовании многообразий Калаби-Яу, которые приводили бы не к четырем, а к трем поколениям элементарных частиц. Горовиц в общении со мной также подчеркнул важность этого момента. Итак, существовала необходимость в многообразии с эйлеровой характеристикой, равной 6 или -6, поскольку, как показал Виттен за несколько лет до этого, для определенного класса многообразий Калаби-Яу, обладающих, помимо всего прочего, нетривиальной фундаментальной группой или нестягиваемой петлей, число поколений равно модулю эйлеровой характеристики, деленному на два. Один из вариантов этой формулы фигурировал в часто цитируемой статье, выпущенной «четверкой» в 1985 году.

Мне удалось выкроить немного времени на то, чтобы заняться этой проблемой, в том же году во время перелета из Сан-Диего в Чикаго по пути в Аргоннскую национальную лабораторию, проводившую одну из первых крупных конференций по теории струн. Мне предстояло выступить с докладом, и время, проведенное на борту самолета, я планировал посвятить подготовке к своему выступлению. Мне пришло в голову, что я, возможно, смогу прояснить вопрос о трех поколениях, который мои друзья-физики считают столь важным. Я оказался прав и по окончанию полета смог представить искомое решение — многообразие Калаби-Яу с эйлеровой характеристикой, равной -6, что сделало это многообразие первым, приводящим к трем поколениям элементарных частиц, как и требовалось в рамках стандартной модели. Хотя это и не было огромным прыжком вперед, тем не менее стало своеобразным «маленьким шагом» — как представил его Виттен. [74] Edward Witten (IAS), e-mail letter to author, July 24, 2008.

Я сконструировал это многообразие при помощи скорее формального, хотя впоследствии и доказавшего свою действенность, метода. Для начала я взял декартово произведение двух кубических гиперповерхностей . Гиперповерхность является подмногообразием, то есть поверхностью, размерность которой на единицу меньше размерности пространства, в котором она находится, подобно диску, входящему в шар, или отрезку прямой, являющемуся частью диска. Таким образом, гиперповерхность кубической поверхности с тремя комплексными измерениями имеет два комплексных измерения. Произведение двух таких гиперповерхностей имеет 2×2=4 комплексных измерения. Это на одно измерение больше, чем нужно, и я укоротил многообразие до трех комплексных измерений (или шести вещественных), необходимых для теории струн, найдя его поперечное сечение.

К сожалению, многообразие, полученное в результате этой процедуры, являлось не совсем тем, которое нам было нужно, поскольку оно порождало не три поколения частиц, а девять. Однако это многообразие характеризуется симметрией третьего порядка, что позволило мне создать так называемое фактор-многообразие , в котором каждая точка соответствовала трем точкам в исходном многообразии. Нахождение фактор-многообразия в этом случае было подобно делению исходного многообразия на три равных части. Таким образом, число точек уменьшилось в три раза, так же как и число поколений.

Насколько мне известно, это фактор-многообразие было первым — и долгое время единственным — многообразием Калаби-Яу, имеющим эйлерову характеристику 6 или -6, что открывало возможность его использования для создания трех поколений элементарных частиц. И действительно, я не слышал ни о чем подобном вплоть до конца 2009 года, когда Канделасу с двумя его коллегами — Фолькером Брауном из Дублинского института перспективных исследований и Рисом Дэвисом из Оксфорда — удалось проделать что-то подобное, создав многообразие Калаби-Яу с эйлеровой характеристикой, равной -72, и фактор-многообразие с эйлеровой характеристикой, равной -6. По иронии судьбы, в конце 1980-х Канделасу с двумя его коллегами удалось создать и исходное (или «родительское») многообразие Калаби-Яу — одно из восьми тысяч многообразий, созданных на то время, — но его потенциальную применимость он осознал только более чем через двадцать лет. [75] Volker Braun, Philip Candelas, and Rhys Davies, “A Three-Generation Calabi-Yau Manifold with Small Hodge Numbers,” October 28, 2009, http://arxiv.org/PS_cache/arxiv/pdf/0910/0910.5464vl.pdf .

Рис 65Геометрия позволяет нам уменьшить число измерений объекта разрезав - фото 43

Рис. 6.5.Геометрия позволяет нам уменьшить число измерений объекта, разрезав его и рассматривая только полученное поперечное сечение. К примеру, разрезав трехмерное яблоко, вы обнаружите двухмерную поверхность — одну из множества поверхностей, которые можно получить, в зависимости от того, где и как вы разрезали. Следующий разрез позволит получить одномерную линию на поверхности. Разрезая эту линию, вы получите отдельную (нульмерную) точку. Таким образом, каждый успешный разрез, вплоть до получения точки, уменьшает размерность объекта на единицу

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x