Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы с Миксом применили основанный на топологии подход Папакирьякопулоса к геометрической проблеме, затронутой в работах Плато. Затем мы пошли в обратном направлении и при помощи геометрии доказали более строгие варианты (по сравнению с теми, которые можно было получить исходя исключительно из топологии) как леммы Дена, так и относящейся к ней теоремы о петле . Прежде всего, мы показали возможность существования диска с наименьшей площадью во вложенном (и, следовательно, несамопересекающемся) пространстве. Однако в этом частном случае (называемом эквивариантным) необходимо было рассматривать не один диск, а множество симметричных пар — нечто подобное многочисленным отражениям в кривом зеркале. Случай, рассмотренный нами, предполагал конечное, хотя и произвольно большое число зеркальных отражений — или симметричных пар. Мы доказали, что диск минимальной площади ни при каких условиях не пересекается ни с самим собой, ни с дисками из его группы симметрии. Можно сказать, что диски, принадлежащие одной группе, «параллельны» друг другу за одним только исключением: в тех случаях, когда диски все же пересекаются, они должны полностью совпадать.

Данная задача важна и сама по себе, однако еще большую важность она приобретает в связи со знаменитой топологической задачей, сформулированной в 1930 году и известной как гипотеза Смита. Эта гипотеза основана на размышлениях американского тополога Пола Смита о возможности вращения обычного трехмерного пространства вокруг бесконечно длинной вертикальной оси. Смиту было известно, что в том случае, когда ось является прямой линией, осуществить вращение вокруг нее трехмерного пространства довольно просто. Его гипотеза состояла в том, что подобное вращение становится невозможным при наличии на оси хотя бы одного узла.

Вас, конечно, может удивить, что кого-то заинтересовал подобный вопрос, но это именно тот тип задач, которыми и занимаются топологи и геометры. Как заметил Кэмерон Гордон из Техасского университета по этому поводу: «Наша интуиция подсказывает нам, что это утверждение самоочевидно, поскольку возможно ли представить вращение пространства вокруг завязанной в узел линии?» Наше с Миксом доказательство леммы Дена и теоремы о петле стали двумя последними фрагментами, необходимыми для того, чтобы подтвердить гипотезу Смита. Окончательное подтверждение его гипотезы было получено путем объединения наших результатов с результатами Уильяма Тёрстона и Хаймана Басса. Упоминавшийся ранее Кэмерон Гордон свел воедино разрозненные фрагменты и получил безупречное доказательство, подтвердившее предположение Смита о невозможности вращения трехмерного пространства вокруг завязанной в узел оси. При этом, правда, оказалось, что — как бы смешно это ни прозвучало — это утверждение неверно для пространств более высокой размерности, и для них подобные вращения все-таки возможны. [29] Cameron Gordon (University of Texas), interview with author, March 14, 2008.

Это доказательство представляет собой прекрасный пример совместной работы геометров и топологов над проблемой, которая потребовала бы от них много больше времени в том случае, если бы они пытались решить ее поодиночке. Кроме того, работая над упомянутой задачей, я впервые осознал, что рассуждения о минимальных поверхностях применимы к вопросам топологии. Наконец, доказательство гипотезы Смита подтвердило идею о возможности использования геометрии для решения проблем в области топологии и физики. Впрочем, пока мы говорили только о топологии и практически не затрагивали физику, оставив открытым вопрос о возможном использовании в ней геометрического анализа.

На международной конференции по геометрии, проходившей в Стэнфорде в 1973 году, мое внимание впервые привлекла одна задача из области общей теории относительности, которой всего через несколько лет после этого суждено было стать подтверждением действенности методов геометрического анализа в физике. Я узнал об этой задаче от физика Чикагского университета Роберта Героха, затронувшего в своем докладе неподтвержденную на то время гипотезу о положительности массы или энергии. Согласно этой гипотезе, в изолированной физической системе общая масса и общая энергия должны быть положительны. В данном случае понятия массы и энергии эквивалентны, как было показано Эйнштейном в его знаменитом уравнении E = mc 2. Поскольку Вселенную можно рассматривать как изолированную систему, гипотеза должна быть применима также и к Вселенной в целом. Вопрос о правомерности этого утверждения был столь важен, что на протяжении многих лет на всех основных конференциях по общей теории относительности ему отводили отдельную сессию. Причиной этого являлось непосредственное отношение гипотезы о положительности массы к вопросу о стабильности пространственно-временного континуума и, следовательно, непротиворечивости теории Эйнштейна самой по себе. Говоря простыми словами, пространственно-временной континуум может быть стабилен только в том случае, если его общая масса положительна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x