Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следующие шаги включают не только получение правильных частиц, но также попытки вычисления их масс, без которых невозможно провести значимые сравнения со Стандартной моделью. До того как мы сможем вычислить массу, мы должны определить значение того, что называется константой взаимодействия Юкавы , описывающей силу взаимодействия между частицами: взаимодействия между материальными частицами Стандартной модели и полем Хиггса, а также его частицей, бозоном Хиггса, являющейся чрезвычайно важной. Чем сильнее взаимодействие, тем больше масса частицы.

Давайте возьмем одну частицу, скажем, d-кварк. Как и в случае других материальных частиц, в описание поля d-кварка входят два компонента: один — соответствующий правосторонней форме этой частицы, а второй — левосторонней. Поскольку масса в квантовой теории поля является результатом взаимодействия с полем Хиггса, мы умножаем два поля для d-кварка (лево- и правосторонние формы) на само поле Хиггса. Результат умножения в этом случае соответствует этому взаимодействию, то есть величина произведения, а точнее величина смешанного произведения , показывает, насколько сильным или слабым является взаимодействие d-кварка и поля Хиггса.

Но это только первая часть сложной процедуры. Следующая сложность возникает из-за того, что величина смешанного произведения может меняться по мере перемещения по «поверхности» Калаби-Яу. С другой стороны, константа взаимодействия Юкавы не является переменной величиной, зависящей от месторасположения на многообразии. Это глобальная величина номер один, а способ вычисления этой величины состоит в интегрировании произведения d-кварка и полей Хиггса по всему многообразию.

Следует помнить, что интегрирование фактически является процессом усреднения. У вас есть некоторая функция (в нашем случае произведение трех полей), которая принимает различные значения в разных точках на многообразии, а вам необходимо получить ее среднее значение. Это необходимо сделать, поскольку константа взаимодействия Юкавы является числом, а не функцией, тогда как масса частицы также является числом. Поэтому следует разбить многообразие на мелкие участки и определить значение функции на каждом участке. Затем сложить все значения и разделить на количество участков, получив среднее значение.

Хотя этот метод может показаться довольно простым, он не даст точного правильного ответа. Проблема состоит в том, что многообразие Калаби-Яу, с которым мы работаем, обладает кривизной, и если взять крошечную «прямоугольную» заплатку, допустив на мгновение, что мы находимся в двухмерном пространстве размером dx×dy , то размер такого участка будет изменяться в зависимости от того, насколько велика его кривизна. Вместо этого следует взять значение функции в точке, где находится заплатка, и затем умножить это значение на весовой коэффициент, зависящий от размера заплатки. Другими словами, необходим способ измерения размера заплатки. А для этого необходима метрика, которая подробно описывала бы геометрию многообразия. Но здесь имеется одна загвоздка, о которой мы уже неоднократно упоминали: пока еще никто не смог предложить метод вычисления метрики Калаби-Яу явно, то есть точно.

Здесь вас может ждать ловушка: без метрики невозможно получить массу, а без массы невозможно узнать, насколько близка имеющаяся модель к Стандартной модели. Но существуют несколько математических методов, а именно численные методы, реализуемые с помощью компьютера, которые можно использовать для приближенного вычисления метрики. Затем возникает вопрос, достаточно ли хороша использованная аппроксимация для получения приемлемого ответа.

В настоящее время применяют два основных метода, и оба в некоторой степени опираются на гипотезу Калаби. Эта гипотеза гласит (как уже отмечалось неоднократно), что если многообразие удовлетворяет определенным топологическим условиям, то оно обладает риччи-плоской метрикой. Не создав саму метрику, я не мог бы доказать, что такая метрика существует. При доказательстве был применен так называемый аргумент деформации, это означает, что если начать с чего-то, скажем, с некой метрики, и деформировать ее определенным образом, то этот процесс в конце концов сойдется к необходимой метрике. Если вы можете доказать, что такой процесс деформации стремится к нужному решению, то существует хороший шанс, что можно найти численную модель, которая также будет сходиться.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x