Нейт понимает, что в прогнозировании есть и другие ловушки. Даже при большом количестве данных их случайность или шум могут усилить или, наоборот, подавить проявление закономерностей. Поэтому Нейт не работает с финансовыми рынками, землетрясениями или климатом. Он мог бы, вероятно, предсказать общие тенденции, но краткосрочные прогнозы неизбежно окажутся очень неопределенными. Сейчас Нейт изучает другие области, где его методы могли бы пролить свет на ситуацию. Как лучше всего распространять музыку или кинофильмы? Какова истинная ценность суперзвезд Национальной баскетбольной лиги? Однако он признает, что лишь небольшое число систем допускает точную количественную оценку.
Тем не менее прогнозисты схожи в одном. Все они занимаются метапрогнозированием — предсказывают, что именно люди захотят предсказать.
ГЛАВА 12. ИЗМЕРЕНИЕ И НЕОПРЕДЕЛЕННОСТЬ
При оценке научных измерений полезно быть на короткой ноге со статистикой и теорией вероятностей. Мне напомнил о пользе вероятностных рассуждений один случай. Несколько лет назад на вопрос, пойду ли я завтра на некое мероприятие, я честно ответила: «Не знаю». Приятель, разочарованный таким ответом, был, по счастью, любителем математики. Так что вместо того, чтобы долго и нудно настаивать на определенном ответе, он попросил меня назвать вероятности того и другого. К собственному удивлению я обнаружила, что ответить на вопрос в такой формулировке намного проще. Хотя названные мной вероятности были всего лишь грубой оценкой, они более точно отражали мои сомнения и неуверенность, чем любое «да» или «нет». В конце концов, такой ответ показался мне куда более честным.
С тех пор я неоднократно пробовала вероятностный подход на друзьях и коллегах в случаях, когда они вроде бы не могли ответить на мой вопрос. Оказалось, что большинству людей нередко проще ответить на вопрос не однозначно, а через вероятности. Человек может не знать, захочет ли он пойти на бейсбольный матч в четверг через три недели. Но если он уверен в том, что ему нравится бейсбол, и не ожидает в ближайшее время командировок, однако сомневается, потому что день будний, он может сказать, что пойдет с вероятностью 80%, хотя и не может гарантировать. Хотя это всего лишь оценка, но названная вероятность — даже такая, которую он просто придумал на месте — более точно отражает реальные ожидания человека, чем простой ответ «да» или «нет».
В разговоре о науке и о том, как действуют ученые, сценарист и режиссер Марк Висенте заметил, что его в свое время поразило, что ученые не любят делать слишком определенные, без всяких оговорок, заявления, которые большинство обычных людей делает не задумываясь. Ученые не обязательно очень уж красноречивы, но они всегда стремятся точно сказать, что они знают, а чего не знают или не понимают, по крайней мере в своей научной области. Они редко говорят «да» или «нет», потому что такой ответ не может точно отразить весь спектр возможностей. Вместо этого они говорят о вероятностях либо ограничивают свои заявления определенными условиями. По иронии судьбы, из‑за такой разницы в языке люди часто неверно понимают заявления ученых или преуменьшают их значение. Несмотря на то что ученые стремятся объяснить все как можно точнее, неспециалисты зачастую просто не знают, как интерпретировать их заявления: ведь любой неученый, имея столько свидетельств в пользу своего тезиса, без колебаний сказал бы что‑нибудь более определенное. Но для ученого отсутствие 100%-ной вероятности не означает отсутствия знания. Это всего лишь следствие неопределенностей, изначально присущих любым измерениям. Вот об этом мы с вами сейчас и поговорим. Вероятностное мышление помогает уяснить смысл того или иного явления и позволяет принимать взвешенные решения. В этой главе мы подумаем о том, что говорят нам измерения, и разберемся, почему именно вероятностные заявления наиболее точно отражают состояние знаний — научных или любых других — в любой конкретный момент времени.
НЕОПРЕДЕЛЕННОСТЬ ПО–НАУЧНОМУ
В Гарварде недавно прошел диспут, посвященный попыткам определить важнейшие элементы современного образования. Одной из обсуждавшихся категорий (по существу, частью обязательных научных требований) были «эмпирические рассуждения». Предложение состояло в том, что университет должен ставить перед собой цель «научить студентов собирать и оценивать эмпирические данные, взвешивать доказательства, разбираться в оценках и вероятностях, делать выводы из имеющихся данных [пока все нормально — Л. Р.], а также распознавать ситуации, в которых вопрос не может быть разрешен на базе имеющихся свидетельств».
Читать дальше
Конец ознакомительного отрывка
Купить книгу