Так думают люди, освещая лучом мысли пространство до задачи, после задачи, вовсе вне задачи. Разбросанный, несобранный ход мыслей приводит к потерям времени, а иногда и того хуже - человек оказывается не способным решить задачу.
Советский психолог Д. Богоявленская исследовала решение различными людьми задачи "О любопытной мухе". Вот условия задачи.
"Из пунктов А и В выезжают навстречу друг другу два велосипедиста. Они движутся с одинаковой скоростью 15 км/ч. Когда между ними остается расстояние в 300 км, с плеча велосипедиста А слетает любопытная муха и летит навстречу велосипедисту В; так как она летит со скоростью 20 км/ч, она встречается с ним раньше, чем велосипедист А. Заинтересованная пробегом муха летает от одного велосипедиста до другого, пока они не встретятся. Спрашивается, какой путь проделала муха?"
Отложите, читатель, на 10-15 минут в сторону эту книгу и попробуйте решить задачу о любопытной мухе. Бумагой желательно не пользоваться, чертежей не делать. Лучше мысленно представить себе, как беспокойная муха летает туда-сюда...
Вам удалось найти решение? Да или нет?
Эту задачу решали многие люди, толковые и грамотные - студенты, инженеры, даже один кандидат химических наук. Почти всем им задача показалась нелегкой, хотя приемы решения у них были разными.
Среди испытуемых Д. Богоявленской были люди, вовсе не решившие задачу, и их оказалось около 40 процентов от общего числа решателей. Четверо из каждого десятка людей не в силах уследить за любопытной мухой, остальные шестеро тратят на эту неблагодарную работу от получаса до полутора часов.
А УЧЕНИК - С решит задачу за считанные секунды. Решит не потому, что знает больше, а потому, что знает меньше, чем наши испытуемые.
Что ему до отблесков солнца на спицах велосипедов что ему до ярких их маек! Его не собьет с толку эта непоседливая муха; ничегошеньки он не ведает ни про спираль Архимеда, ни про черепаху и Ахилла, ни про бесконечно малые. Его дело - пункты А и В; объекты - 1-й велосипедист, 2-й велосипедист, муха; расстояние - 300 километров, скорость 1-го равна скорости 2-го и равна 15 километрам в час, скорость мухи 20 километров в час; время выезда у всех одинаковое, время прибытия тоже; движение равномерное, навстречу друг другу; найти путь мухи. Решение: 300/(15+15)=10 часов; 20 км/ч Х 10 ч=200 км; ответ - 200 километров.
Двести километров - и никаких проблем!
Итак, меньше знать - лучше решать. Если, конечно, тебе достаются именно те задачки, которые ты в своем малосознании способен решать. А если ты живешь в реальном мире с его бурями и страстями, если проблемы, как фурии, выскакивают с разных сторон, непохожие друг на друга, неарифметические... Тогда человеческое воображение, образное представление, звуки, запахи и краски входят в ткань наших решений, оказываются жизненно необходимыми. Чтобы жить в реальном мире, нужно знать гораздо больше, чем УЧЕНИК - А и УЧЕНИК - С, даже если сложить их лингвоариф-метические знания и умения.
Задача с велосипедистами и мухой
Искинт должен работать в мире природы, людей и машин. УЧЕНИКи еще не способны к этому, они приготовишки, не. более. А все же они понимают задачи в их естественной, человеческой постановке, умеют восстановить пропущенное и однозначно истолковать по-разному сказанное. Они способны совершить прыжок от неформального к формальному, смонтировать арматуру из неизвестных и известных, а потом залить конструкцию бетоном уравнений.
Ученики работают с простенькими задачками, но это не беда. Были бы способности, а задачи легко усложнить. И действительно, в конце 60-х годов появились программы, которым под силу почти весь задачник Шапошникова и Вальцева, почти вся школьная алгебраическая мудрость.
О эти школьные задачи! Немало взрослых людей до конца жизни с дрожью вспоминают бездонные бассейны, таинственные растворы, работающих комбайнеров, проницательных продавцов и ехидных землекопов. До конца жизни в их снах из города Потомска отходит поезд, который через х часов мог прибыть в Ни-кудавль, но задержался на у минут в Ерундаре...
Искинт хладнокровно справляется с любой из этих задач, преодолевает болото расплывчатости, усматривает замаскированные факты, уточняет цели. Более того, Искинт покушается на вузовский курс математики, например, на интегрирование.
"Для решения задач интегрального исчисления на уровне хорошего первокурсника была составлена программа для большой быстродействующей универсальной вычислительной машины ИБМ-7090. Программа называется САИНТ (Символический Автоматический ПНТегратор)" - так начинается научный отчет Джеймса Слейгла, автора САИНТа, о проделанной работе.
Читать дальше