«Мы похожи на людей, которые тыкают пальцем в черную занавеску, пытаясь во что-то попасть, но что за этой занавеской, никто не знает».
Константин Северинов
Но это не значит, что бактерия и все ее потомки навеки гарантированы от заражения: вирус тоже не дремлет. Он мутирует, изменяя время от времени последовательность букв-оснований в своем геноме. И когда он случайно изменит хоть одну букву из тех, что записаны в спейсере CRISPR-кассеты, вирус снова станет победителем, а бактерия останется безоружной, пока не подцепит себе новую охранную грамоту – дополнительный спейсер – от того же паразита.
Таким образом, если есть хоть одно несоответствие между фрагментом ДНК вируса и CRISPR-спейсером бактерии, защиты не будет. К чему такая точность? Дело в том, что определенная последовательность из тридцати-сорока нуклеотидов – автограф вируса, оставленный в виде спейсера, – по статистике вряд ли случайно встретится на бактериальной хромосоме. Но если допустить возможность хотя бы одной опечатки, вероятность случайного совпадения с какой-нибудь последовательностью ДНК бактерии резко возрастает, a это может привести к автоиммунному ответу. Другими словами, чтобы система CRISPR не начала случайно громить хромосому бактерии, она должна работать очень точно и быть чувствительной даже к единичным несоответствиям между ДНК вируса и последовательностью спейсеров.
Но при чем тут генная медицина, спросите вы. Это важный вопрос, потому что многие люди, которые занимались системой приобретенного иммунитета CRISPR – и я один из них, – тоже не сразу поняли, при чем тут генная медицина, и прошляпили открытие своей жизни. Тем временем чуть больше года назад в журналах Science и Nature пошли одна за другой статьи с названиями типа «Использование системы CRISPR для редактирования человеческого генома». И вот это уже имеет к генной медицине самое непосредственное отношение.
Вспомним: что такое генная медицина? И что такое генетические болезни?
Человек оказывается носителем генетического заболевания, если генетическая информация, кодирующая какой-то определенный белок его организма, оказывается изменена. Возьмем, к примеру, болезнь, которая называется «серповидно-клеточная анемия» [28], – это болезнь крови, которая распространена в Центральной Африке. У страдающих этой болезнью клетки крови, эритроциты, имеют не обычную форму диска, а вытянуты в одном направлении – из-за этого они нередко закупоривают капилляры. Причина в том, что у таких больных в одной из копий гена гемоглобина – полученной или от отца, или от матери, – есть единственная ошибка: буква G заменена на Т. Из-за этого меняется последовательность аминокислот в гемоглобине, одна аминокислота оказывается замененной на другую. Измененный белок перестает быть растворимым, его молекулы связываются друг с другом и образуют длинные жесткие нити, распирающие клетку изнутри, придавая ей странную форму.
Похожим образом устроены и более сложные генетические болезни, такие как рак. В раковой клетке тоже возникают генетические изменения, и в результате она начинает бесконтрольно делиться, другое изменение приводит к злокачественности, способности метастазировать и так далее. Серия таких изменений в конечном счете обеспечивает развитие болезни.
Как лечить генные болезни? Принципиально вопрос несложный: фактически лечение генетических болезней – это редактирование. Представьте себе, что наш геном – это книга, в которой написано, что это вы. Нужно найти в этой книге опечатку и ее исправить. Принципиально все просто, но на самом деле все очень сложно, потому что размер генома человека – около трех миллиардов букв. Это тысяча произведений размером с «Войну и мир». Нам нужно каким-то образом пролистать их, найти одну-единственную опечатку, ответственную за болезнь, и исправить ее. Причем нужно сделать это очень точно, ведь могут быть похожие генетические слова, а вы хотите исправить опечатку именно здесь и не испортить все остальное.
Тут и приходит на помощь система CRISPR. Мы уже сказали, что она способна узнавать генетические слова длиной в тридцать-сорок букв с точностью до одной-единственной буквы. И люди, которые помнили про генную медицину, решили: чем черт не шутит, давайте засунем в человеческую клетку бактериальный Cas-белок и снабдим его РНК, спейсерный участок которой будет соответствовать участку человеческого гена, нуждающегося в корректировке.
Дальнейшее – дело техники: РНК найдет опечатку, бактериальный Cas-белок перекусит хромосому, а уж после этого в дело вступают наши собственные защитные системы: поврежденная нить ДНК восстанавливается по правильной нити из хромосомы, полученной от другого родителя.
Читать дальше
Конец ознакомительного отрывка
Купить книгу