На сайте www.bbc.co.ukмы нашли информацию о том, что еще в 2012 г. американские эксперты разработали то, что, по их словам, является наиболее реалистичным и точным с биологической точки зрения роботизированным протезом ног на основе работы нейросетей мозга человека. Инженеры уверены, что разработка может способствовать пониманию того, как дети учатся ходить и как следует лечить спинномозговые травмы. Специалистами была создана специальная система сообщений, которая генерирует ритмические сигналы мышц, контролирующих ходьбу. Британские эксперты считают, что интерес работы состоит еще и в том, что робот имитирует процесс ходьбы, а не просто движется.
Команда инженеров из Университета Аризоны (США) смогла сделать машинную копию сети нервных клеток в поясничном отделе спинного мозга, который генерирует ритмические сигналы мышц. Нейронные сети производят, а затем контролируют эти сигналы, собирая информацию из различных частей тела, участвующих в ходьбе. Это позволяет людям ходить, не думая об этом. В статье в журнале о нейроинженерии Journal of Neural Engineering говорится: «Этот робот представляет собой физическую или нейроботизированую модель системы, что свидетельствует о полезности такого рода исследований робототехники для изучения нейропсихологических процессов ходьбы человека и животных».
Мэтт Торнтон из Национальной ортопедической больницы Великобритании (UK’s Royal National Orthopaedic Hospital) отметил, что предыдущие роботы лишь имитировали движения человека, а этот в отличие от них копирует основные механизмы, контролирующие процесс движения человека. Авторы исследования убеждены, что это может создать новый подход к исследованию и пониманию связи между проблемами нервной системы и патологиями ходьбы.
Нейротехнологии для биоуправления техникой с использованием живых нейронных сетей. Несомненно, что это направление нейротехнологий также является вариацией и неотъемлемой частью технологий нейромашинного интерфейса. Однако здесь мы хотим поговорить об особом направлении этих современных нейротехнологий, когда устанавливается информационное взаимодействие между живыми нейросетями и компьютером, управляющим техническим устройством. Одним из очень перспективных направлений современной нейроинженерии являются работы Томаса ДеМарса (Thomas DeMarse), проф. биомедицинской инженерии Флоридского университета (США), который стал автором сенсационного проекта. Из клеток крысиного мозга он вырастил отдельный живой «мозг» и, подсоединив к компьютеру, обучил его управлять симулятором военного самолета.
Рис. 22.Томас ДеМарс (Thomas DeMarse), проф. биомедицинской
инженерии Флоридского университета (США)
Как считает Томас ДеМарс, эти достижения – только начало. Открытие позволит ученым сделать то, о чем они раньше могли только мечтать: увидеть, как взаимодействуют клетки мозга при выполнении определенной функции. «Мозг» Томаса ДеМарса – это 25 тыс. живых нервных клеток мозга крысы, помещенных в чашку Петри и подсоединенных через электроды к компьютеру. Это уникальное «окно», сквозь которое ученые могут наблюдать за работой мозга на клеточном уровне. Видя, как взаимодействуют клетки мозга, ученые смогут понять, что вызывает нервные расстройства, такие, например, как эпилепсия, и найти безоперационные методы их лечения.
Будучи «живым компьютером», созданная ДеМарсом модель может быть использована очень широко – например, для беспилотного управления самолетом или для выполнения заданий, опасных для жизни человека, вплоть до розыскных и спасательных операций. «Наш мозг обладает фантастической вместительностью! – говорит Томас ДеМарс. Вы легко можете вспомнить, что вы делали, когда вам было пять лет. Для человека это в порядке вещей, но компьютер пока на такое неспособен. Если мы вычислим, как работают нейронные сети мозга, то есть как нейроны складываются во время работы в своеобразные мозаики, мы сможем применить их для создания новых компьютерных сетей».
Экспериментальный «мозг» Т. ДеМарса взаимодействует с симулятором военного самолета F-22 через специально созданную систему, называемую мультиэлектродным массивом, и простой настольный компьютер. Электродный массив – это фактически тарелка с 60 электродами, объединенными в сеть на самом ее дне, а поверх них и размещаются нервные клетки из мозга крысы. Они с большой скоростью делятся и наводят между собой живые «мостики», образуя нейронную сеть. Мозг и симулятор налаживают между собой двустороннее взаимодействие, похожее на то, которое возникает, когда нейроны человека получают и анализируют сигналы, поступающие от тела. Чтобы контролировать симуляционный полет самолета, нейроны вначале получают информацию из компьютера об условиях полета: летит ли самолет прямолинейно или поворачивает вправо или влево. Затем нейроны анализируют данные и отвечают, посылая сигналы в центр контроля самолета. Эти сигналы меняют направление полета, и новая информация посылается нейронам, создавая систему взаимодействия. ДеМарс и его коллега Хосе Принсипе получили на дальнейшие разработки проекта правительственный грант в 500 тыс. долл. Они планируют создать математическую модель, отображающую работу нейронов мозга. Хотя уже сейчас созданная Томасом ДеМарсом мозгоподобная культура нервных клеток способна управлять симулятором самолета, ученый заявляет, что основные достижения и открытия еще впереди.
Читать дальше