В нормальных физиологических условиях метаболиты цикла Кребса функционируют как модуляторы иммунитета. Янтарная кислота скорее поддерживает развитие воспаления ( Tannahill G. et al. , 2013; Littlewood-Evans A. et a.l , 2016), хотя на макрофаги, особенно в некоторых тканях, например жировой, янтарная кислота действует противовоспалительно ( Keiran N. et al. , 2019) Торможение воспаления фумаровой кислотой, особенно в слегка измененной, но физиологической форме диметилфумаровой кислоты еще более выражено ( O’Neill L. A., Kishton R. J. and Rathmell J. , 2016). Вообще, близкие родственники (производные) трикарбоновых кислот с митохондриальной карусели, как правило, еще более активны. Так, итаконовая (метилен-янтарная) кислота обладает очень выраженными иммуномодулирующими и антибактериальными свойствами. Своим действием она уравновешивает провоспалительные эффекты янтарной кислоты, а также способна «перекрывать кран» с углеводами организма для многих бактерий-паразитов. Также крайне разносторонними эффектами на иммунную систему обладает трикарбоновая альфа-кетоглутаровая кислота (α-КГ). Она влияет и на эпигенетику клетки: не расставляет, как ацетил-коэнзим А, ацетиловые метки на хроматине, а убирает метиловые метки, расставленные, например, S-аденозилметионином. В особенности активна производная от α-КГ – 2-гидроксиглутаровая кислота. Она способна ключевым образом влиять на дифференцировку иммунных Т-клеток с помощью аналогичных эпигенетических механизмов ( Xu T. et al. , 2017). И, пожалуй, самое главное, что большинство из названных факторов конструируют специфический эпигенетический ландшафт неадаптивных иммунных клеток при формировании «тренированного иммунитета» ( БОН: глава XII).
Располагая таким внушительным арсеналом определяющих воздействий на состояние всей клетки и даже влияя на функциональный статус всей совокупности клеток – всего организма, митохондрион не может быть простым пассивным топливным элементом клетки; очевидно, что именно он ведущий игрок в сложной внутриклеточной игре, определяющий функциональный потенциал и в целом судьбу как «своей» клетки, так и, во многом, всего организма. Но является ли он лишь одним из ведущих игроков, разделяя дуумвират или триумвират, например с ядром и/или хлоропластами (в растительной клетке), или обладает безусловным лидерством, подчиняя остальных своим интересам? Ответ может лежать у самых оснований жизни и эволюции, на зыбкой границе термодинамики, квантовой физики и физической химии.
1. Димер Д., Джокич Т., ван Кранендонк М. (2017). Источники жизни. ВМН № 10, с. 14–20.
2. Диброва Д. В., Гальперин М. Ю., Кунин Е. В., Мулкиджанян А. Я. (2015). Древние системы натрий-калиевого гомеостаза клетки как предшественники мембранной биоэнергетики. Биохимия, 80, с. 590–611.
3. Козлова М. И., Бушмакин И. М., Беляева Ю. Д., Шалаева Д. Н., Диброва Д. В., Черепанов Д. А., Мулкиджанян А. Я. (2020). Экспансия «натриевого мира» сквозь эволюционное время и таксономическое пространство. Биохимия, 85, с. 1788–1815.
4. Guo W., Kinghorn A. B., Zhang Y., Li Q., Poonam A. D., Tanner J. A., Shum H. C. (2021). Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 12, 3194.
5. Mulkidjanian A. Y., Bychkov A. Y., Dibrova D. V., Galperin M. Y., Koonin E. V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA. Apr 3; 109(14): E821-30.
6. Skilhagen S. E. (2011). Osmotic power; status, opportunities and future plans. Osmotic power seminar, Tokyo, November 8 th, 2011.
7. Brogioli D. (2009). Extracting renewable energy from a salinity difference using a capacitor. Physical review letters, 103 5, 058501.
8. Ye M., Pasta M., Xie X., Dubrawski K., Xu J., Liu C., Cui Y., Criddle C. (2019). Charge-Free Mixing Entropy Battery Enabled by Low-Cost Electrode Materials. ACS Omega, 4, 11785–11790.
9. Papayannopoulos V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology 18, 134–147.
10. Sharma P., Garg N., Sharma A., Capalash N., Singh R. (2019). Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J of Medical Microbiology, Vol. 309, Issue 8, 151354.
11. Artés J., Li Y., Qi J., Anantram L. P., Hihath J (2015). Conformational gating of DNA conductance. Nat Commun 6, 8870.
12. Rothemund P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.
13. Xu J., Chmela V., Green N., Russel D.A., Janicki M. L., Gora R. W., Szabla R. A., Bond A. D., Sutherland J. D. (2020). Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66.
14. Extance A. (2020). The First Gene on Earth May Have Been a Hybrid. Scientific American, Vol. 323, issue 3.
15. Murayama K., Okita H., Kuriki T., Asanuma H. (2021). Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid. Nat Commun 12, 804.
16. Flynn R. A., Pedram K., Malaker S. A., Batista P. J., Smith B. A. H., Johnson A. G., George B. M., Majzoub K., Villalta P. W., Carette J. E., Bertozzi C. R. (2021). Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 8:S0092-8674(21)00503-1.
17. Mast C. B., Osterman N., Braun D. (2010). Disequilibrium First: The Origin of Life. Journal of Cosmology, Vol. 10, 3305–3314.
18. Mast C. B., Schink S., Gerland U., Braun D. (2013). Escalation of polymerization in a thermal trap. PNAS 110 (20).
Читать дальше