1 ...7 8 9 11 12 13 ...129 Более простая система из образ-распознающих рецепторов фиксированной формы, которую предвидел Джейнуэй, образует часть так называемого врожденного иммунитета — в отличие от другой стороны нашей иммунной защиты, которая существует за счет памяти о пережитых инфекциях: это приобретенный иммунитет. Понятие «врожденный иммунитет» уже было в употреблении до Джей- нуэя — им описывали быстродействующие механизмы защиты, обеспечиваемые кожей, слизью и мгновенными действиями иммунных клеток, устремляющихся к порезу или ране, однако в учебниках этому предмету уделяли всего несколько страниц, в том числе — и в учебнике-бестселлере авторства самого Джейнуэя [35] Чарлз Джейнуэй вместе с его коллегой Полом Трэверзом впервые опубликовали учебник «Иммунология» в 1994 году. Это и все последующие издания оказались невероятно популярными. Девятое издание этой книги, именуемое уже «Иммунобиологией Джейнуэя» (Janeway’s Immunobiology) увидело свет в 2016 году, с дополнениями Кеннета Мёрфи и Кейси Уивера.
. Революционными мысли Джейнуэя оказались в том, что он, по сути, предложил новую миссию иммунной системы. До Джейнуэя raison d’être [36] Причина существования, смысл бытия (фр.) . — Примеч. перев.
иммунной системы сводили к отклику на то, чего прежде в теле не было. Однако Джейнуэй объявил, что иммунная система обязана откликаться на то, чего прежде в теле не было — и оно должно быть микробное или вирусное .
Теперь уже, задним числом, понятно вот что: необходимо, чтобы иммунная система не просто откликалась на то, чего в теле прежде не было. Пища, безвредные кишечные бактерии или пыль в воздухе — не часть человеческого тела, но никакой угрозы не представляют и не должны вызывать действие иммунной системы. Но, как сказал в 1930 году Джордж Бернард Шоу, «наука неспособна решить одну задачу, не поставив при этом еще десять» [37] Эти слова Джордж Бернард Шоу произнес в Лондоне 28 октября 1930 года на открытом обеде в честь Альберта Эйнштейна. Фрагменты речи Шоу приводятся в: Michael Holroyd, ‘Albert Einstein, Universe Maker’, New York Times , 14 марта 1991 года.
. Даже если оставить в стороне самую крупную неувязку, с которой столкнулись соображения Джейнуэя, — недостаток экспериментальных данных в поддержку этих соображений, — имелась и теоретическая нестыковка: микробы и вирусы стремительно размножаются. Скорость их размножения не умещается в голове. Одна-единственная зараженная вирусом человеческая клетка способна произвести сотню новых вирусных частиц. Это означает, что всего три экземпляра вируса, пройдя четыре цикла воспроизведения — примерно за несколько дней, — приведут к 300 миллиардам новых вирусных частиц [38] Исходя из расчета: 3 × 100 4 = 3 × 10 8 .
. И так дело обстоит не только с вирусами: в оптимальных условиях бактерии делятся каждые двадцать минут, то есть одна бактерия способна произвести пять миллиардов триллионов (5 × 10 21) бактерий всего за день — примерно столько звезд во Вселенной [39] Исходя из расчета 72 делений за 24 часа (раз в 20 минут), что приводит к 2 72 потомкам.
. На практике микробы в человеческом теле в таких масштабах размножаться неспособны, потому что для этого потребовался бы неограниченный объем ресурса, но тем не менее популяция микробов стремительно достигает громадных размеров — гораздо быстрее, чем мы со своими двумя жалкими отпрысками в расчете на семейную пару, за целую жизнь [40] По сути, это означает, что процесс эволюции путем естественного отбора происходит у вирусов гораздо быстрее, чем у нас. У некоторых вирусов все еще более прытко, поскольку скорость, с которой возникают генетические вариации, когда вирус размножается, гораздо выше, чем в человеческих организмах (потому что машинерия копирования генетического материала у некоторых вирусов довольно небрежна). Вирусам эта особенность не вредит: любой бракованный экземпляр мало влияет на судьбу остальной популяции.
. Это подводит нас к ключевой трудности, возникающей в связи с соображениями Джейнуэя: всякий раз, когда микроб размножается, у него в генах происходят случайные перемены — мутации, — и из-за них микроб с немалой вероятностью или даже неизбежно теряет молекулярные характеристики, замеченные нашей иммунной системой. Иными словами, в целой популяции вирусов или бактерий некоторые чисто случайно — потому что их очень много — окажутся с генетическими отличиями, из-за которых изменится та часть микроба, с которой образ-распознающий рецептор должен связываться. Микробы, у которых нет «молекулярного образа», избегут распознания иммунной системой и бодро размножатся.
Читать дальше
Конец ознакомительного отрывка
Купить книгу