Индукция набора клеточных репликативных белков имеет глубокие последствия на клетку-хозяина, которая насильно побуждается к репликации ДНК. Когда пролиферативный сигнал устойчиво поддерживается, например, в непермиссивных клетках, которые не способны поддерживать репликацию вирусной ДНК, клетки могут подвергнуться устойчивой трансформации. Таким образом, мало того, что многие ДНК- вирусы стимулируют статические клетки к повторным циклам деления, они также трансформируют клетки в культуре и вызывают опухоли у животных. Рассмотренная способность многих опухолеродных ДНК-вирусов стимулировать неограниченный рост клеток не является особенностью нормальной репликации вирусов, а скорее представляет собой аберрантный ответ клеток на вирусную инфекцию. В соответствии с этим, парвовирусы, неспособные стимулировать репликацию клеточной ДНК, являются одними из немногих ДНК-содержащих вирусов, которые не трансформируют клетки. Однако способность вирусов стимулировать синтез клеточной ДНК не всегда коррелирует с их способностью трансформировать клетки. Например, одни вирусы герпеса стимулируют синтез ДНК, другие нет, и, тем не менее, они фактически запрещают быстрое клеточное деление. Такие большие вирусы с их большой кодирующей емкостью способны создать надлежащую среду для репликации вирусной ДНК без активации клеточного репликативного аппарата.
Необходимость нуклеотидов для репликации ДНК. Как описано выше, для репликации парвовирусов необходимо, чтобы клетки находились в S-фазе, а папиломавирусы, полиомавирусы и аденовирусы стимулируют клетки, чтобы ввести Sфазу, требующую для синтеза ДНК большой концентрации дезоксинуклеозидтрифосфатов (дНТФ). Через воздействие на членов белковых семейств Rb и E2F, папиломавирусы и аденовирусы стимулируют синтез фермента рибонуклеотидредуктазы, который требуется для поддержания достаточного для вирусной репликации уровня дНТФ. Напротив, вирусы герпеса и поксвирусы способны реплицироваться в покоящихся клетках. Одной из причин того, что эти вирусы могут обходить требование к S-фазе является их способность кодировать ферменты для синтеза дНТФ – рибонуклеотидредуктазу и тимидинкиназу. В случаях вируса герпеса и вируса опоясывающего лишая/ветряной оспы вирусная тимидинкиназа является ключевой точкой для противовирусной химиотерапии, потому что этот вирусный фермент фосфорилирует аналоги нуклеозида, такие, как ацикловир, более эффективно, чем это делают клеточные ферменты. Преобразованные в фосфорнокислую форму эти аналоги дНТФ выборочно вредят репликации ДНК герпесвирусов.
Независимо от вида ДНК-генома единицей его репликации является так называемый репликон – единица генома, способная к автономной репликации. Репликон представляет собой нуклеотидную последовательность, расположенную между точкой начала репликации (origin или ori) и точкой окончания репликации (terminus). Процесс репликации ДНК разделен на три стадии: инициация цепи, элонгация (удлинение) цепи и терминация синтеза. Вирусы с различными видами ДНК-генома реализуют оригинальные стратегии репликации. При этом главные особенности наблюдаются при инициации синтеза.
Основные принципы репликации ДНК-геномов вирусов.
Инициация синтеза ДНК. Большинство ДНК вирусов эукариот (кроме поксвирусов) копирует свои геномы в ядре. Репликация ДНК-геномов вирусов инициируется в специфических точках ori.
В отличие от клеточных ориджинов, которые активируются один раз в течение клеточного цикла, вирусные точки ori могут срабатывать много раз в течение отдельного цикла репликации. Инициация синтеза цепи ДНК может происходить только при наличии затравки для ДНК-полимеразы. Вид затравки и способ ее образования различаются у разных вирусов и определяют своеобразие вирусных репликативных систем. Различают три основных способа инициации синтеза ДНК (смотри пункт 3.7.1.1, с. 63).
Элонгация цепи при репликации вирусных геномов принципиально не отличается от процесса синтеза клеточных ДНК. Используются ферменты, вспомогательные белки и репликационные белки, принадлежащие как клетке-хозяину, так и вирусу. Синтез ДНК, как правило, осуществляет ДНК-зависимая ДНК-полимераза α. Основным свойством синтеза является его полярность, при которой очередной нуклеотид присоединяется к 3’– концу растущей цепи. То есть направление синтеза идет от 5’– к 3’-концу, считывание – от 3’– к 5’-концу. Особенности синтеза комплементарных нитей связаны со способом инициации. На днДНК-матрице синтез идет через образование репликативной вилки (рисунок 9) или с вытеснением цепи, на онДНК матрице – по репарационному механизму.
Читать дальше
Конец ознакомительного отрывка
Купить книгу