Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь есть возможность читать онлайн «Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

только числа, которые являются степенями 2, нельзя представить как сумму последовательных натуральных чисел.

Приведя подобные слагаемые в суммах последовательных чисел, увидим, откуда появляется этот нечетный множитель:

Если число слагаемых n нечетное этим нечетным множителем будет n если же - фото 114

Если число слагаемых n нечетное, этим нечетным множителем будет n , если же число слагаемых n четное, то этим нечетным множителем будет 2 n + 1. В любом случае один из сомножителей будет нечетным.

* * *

КАРЛ ФРИДРИХ ГАУСС(1777–1855)

Этот немецкий математик, который родился в Брауншвейге и умер в Гёттингене, был вундеркиндом. Он получил хорошее образование благодаря не отцу, а матери. Гаусс никак не мог решить, что ему следует изучать — философию или математику. В начале весны 1796 года он сделал выбор в пользу математики, и наука весьма благодарна ему за это, так как Гаусс в итоге стал одним из величайших математиков всех времен. Несомненно, на его решение повлиял тот факт, что в тот самый весенний день ему удалось построить с помощью циркуля и линейки правильный 17-угольник. Как математик Гаусс совершил много важных открытий, но этим успехом он гордился больше всего — настолько, что попросил высечь этот многоугольник на своем надгробии, на что мастер возразил, что высечь эту фигуру будет очень сложно и ее будет почти невозможно отличить от окружности.

Портрет Гаусса Этот немецкий математик доказал что правильный 17угольник - фото 115

Портрет Гаусса .

Этот немецкий математик доказал что правильный 17угольник можно построить с - фото 116

Этот немецкий математик доказал, что правильный 17-угольник можно построить с помощью циркуля и линейки.

Глава 4

Межкультурное и творческое взаимодействие

До сих пор мы говорили о наиболее типичном аспекте математической деятельности — о том, как человек, сталкивающийся с событиями и явлениями, пытается объяснить их с точки зрения математики. Мы не углублялись в культурные и социальные аспекты математики, хотя в первой главе отметили, что именно они играют основную роль в ее развитии.

Математика формируется в рамках определенного социального и культурного контекста, который в значительной степени определяет ее развитие как внутри научной среды, так и вне ее. Следовательно, социокультурные факторы влияют на математическое творчество, так как придают одним задачам большую важность, чем другим, и если в одной культуре определенные задачи считаются очень важными, то в другой культурной среде им не уделяется никакого внимания.

Этноматематика — это раздел науки, изучающий развитие математики в определенных группах культур. Благодаря этноматематике мы знаем, что в разных частях света люди по-разному производят вычисления, по-своему воспринимают геометрические фигуры и используют для решения одних и тех же задач разные алгоритмы. С одной стороны, это доказывает творческую природу каждой культуры, с другой стороны — делает возможным межкультурное взаимодействие.

Далее мы вкратце расскажем о том, как автор этой книги накапливал новые математические знания вне своей научной среды и вне родной ему западной культуры. Надеемся, что читатель снисходительно отнесется к крайне субъективному характеру повествования.

Пока что мы всегда говорили об эвристике в рамках определенной культуры — как в пределах академической среды, так и за ними. Теперь мы выйдем за рамки нашей культурной парадигмы и посмотрим, как математическое творчество соотносится с различными культурными и социальными аспектами, как оно связано с ними.

Мы уже говорили, что первый шаг на пути к математическому творчеству — это начать задавать вопросы о том, что нас окружает. Что может быть лучше, чем выйти из дома и начать наблюдать, изучать новое, испытывать незнакомые ощущения?

Путешествие к другим культурам

Математики нечасто путешествуют. Мы не имеем в виду путешествия, связанные с научной работой, которые проходят в привычном для ученых контексте. Мы говорим о путешествиях с целью узнать что-то новое, познакомиться с новыми людьми, новыми культурами и обычаями, новым образом жизни и образом мыслей. К таким путешествиям не относятся организованные поездки, так как в них туриста окружает значительная часть привычной среды — хотя бы минимальные удобства, транспорт, гид-переводчик и попутчики, принадлежащие к родной культуре.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Представляем Вашему вниманию похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Обсуждение, отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x