Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

НЕПОЛНОТА ЗАМОЩЕНИЙ

Замощение плоскости — это покрытие ее «облицовочной плиткой» определенной формы без промежутков и наложений. Исламское искусство содержит прекраснейшие образцы замощений, но они встречаются и в природе: так, пчелиные соты представляют собой оптимальное замощение плоскости шестиугольниками. Оно необязательно должно быть правильным: возможно, существуют другие, непериодические замощения, не обладающие какой-либо симметрией.

В 70-е годы логик Хао Ван(1921–1995) обнаружил, что если вопрос о замощении плоскости является неразрешимым в том же смысле, в каком нельзя ни доказать, ни опровергнуть высказывание «я недоказуемо», то подобные непериодические замощения плоскости существуют. Так как возможность существования подобных замощений показалась ему полностью абсурдной, он сделал вывод: этот вопрос обязательно должен быть разрешимым. Однако несколько лет спустя один из его студентов доказал, что, используя 20426 плиток разной формы, можно получить непериодическое замощение плоскости. Эта величина понемногу уменьшалась, и в итоге было найдено непериодическое замощение плоскости, состоящее всего из двух плиток разной формы.

Слева правильное замощение плоскости образованное одинаковыми правильными - фото 50

Слева— правильное замощение плоскости, образованное одинаковыми правильными многоугольниками подобно пчелиным сотам. Справа— пример непериодического замощения.

* * *

О чем не говорится в теоремах

Заключительный этап рассуждений, в котором мы доказали, что никакое непротиворечивое и рекурсивно перечислимое множество аксиом арифметики не может быть полным, очень точно воспроизводит сцену, когда ученики возвращаются из школы домой и плачут: «Мама, я никогда не буду логиком!», а остальные — «горсточка счастливцев», о которых писал Шекспир, — улыбаются до ушей. Мы хотим, чтобы читатель этой книги оказался в числе этих немногих. Хотя, возможно, нам не удалось достичь этой цели, и те, кто хочет закричать: «Мама, я никогда не буду логиком!» или отбросить книгу в сторону, поймут, что теоремы, о которых мы только что рассказали, не имеют ничего общего с фразой вида: «После того как Гёдель доказал, что не существует доказательства непротиворечивости арифметики Пеано, которое формулируется в терминах самой арифметики, политологи, наконец, поняли, почему следовало мумифицировать Ленина и выставить его на обозрение в Мавзолее».

Следует признать, что автор этой цитаты, французский эссеист Режи Дебре, известен своим воображением, но отнюдь не невежеством: он родился в 1940 году и изучал философию у Луи Альтюссера в Высшей нормальной школе Парижа. Он находился в тюремном заключении в Боливии, но был освобожден после начала международной кампании в его поддержку, в которой участвовали Жан-Поль Сартр и папа римский Павел VI — трудно найти более непохожих друг на друга людей. В свободное от политики время Дебре начал работу над своим трудом, сегодня насчитывающим около пятидесяти книг, среди которых «Происхождение политики», из которой и взята цитата о Ленине.

Пример Режи Дебре не единственный: другие интеллектуалы, например философы Жиль Делёз и Юлия Кристева, психоаналитик Жак Лакан и архитектурный критик Поль Вирильо, использовали прием, который французский философ Жак Бувресс называл «головокружением аналогий». Они выводят из логического высказывания, носящего сугубо технический характер, некий общий вывод, не имеющий никакого отношения к математике, но псевдонаучный вид которого, несомненно, произведет впечатление на читателя.

Гораций писал, что однажды выпущенное слово улетает безвозвратно. Помимо цитат, приведенных в этой книге, читатель может самостоятельно ознакомиться с оригинальными произведениями Юлии Кристевой, Режи Дебре, Жака Лакана, Жиля Делёза и Поля Вирильо и решить, являются их слова доказательством того, что не следует рассуждать о неизвестном, или, напротив, они как нельзя лучше подтверждают огромную притягательность некоторых теорем, которые — повторим вслед за Джоном фон Нейманом — являются вехой, видимой издалека, во времени и пространстве. Далее мы расскажем только о тех, кто прекрасно понимал, о чем говорит, и на сцену выходит один из величайших гениев в истории — Алан Мэтисон Тьюринг.

Глава 5

Машины Тьюринга

На что я могу надеяться?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x