Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика

Здесь есть возможность читать онлайн «Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 12. Числа-основа гармонии. Музыка и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 12. Числа-основа гармонии. Музыка и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса?
Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Том 12. Числа-основа гармонии. Музыка и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 12. Числа-основа гармонии. Музыка и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чистые и настоящие тона

График синусоидальной функции соответствует чистым звуковым колебаниям, которые не так часто встречаются в реальном мире. Примерами чистых звуков являются звуки камертона, свист, а также звук трения мокрого пальца о стекло.

Однако звук гитарной струны колокола или флейты образуется основными - фото 184

Однако звук гитарной струны, колокола или флейты образуется основными колебаниями вкупе со множеством волн меньшей интенсивности и большей частоты. Эти волны называются обертонами. Любой звук, который не является чистым, состоит из множества одновременно звучащих звуков. В основе анализа отдельных обертонов каждого звука лежат открытия, совершенные французским математиком Жаном Батистом Жозефом Фурье(1768–1830) , который доказал, что любую периодическую несинусоидальную волну можно разложить в ряд синусоидальных волн.

Звуковую волну можно представить как совокупность волн ее отдельных обертонов и - фото 185

Звуковую волну можно представить как совокупность волн ее отдельных обертонов и волны основного звука. Этот кажущийся хаос в действительности представляет собой строго упорядоченную систему. В зависимости от структуры материала источника звука, окружающей среды, резонаторов и других факторов формируются обертоны основного тона, частоты которых непосредственно связаны с частотой основного звука. При анализе и оценке обертоны упорядочиваются и нумеруются в порядке возрастания частоты. В целом можно говорить, что с ростом частоты звука увеличивается его интенсивность. Однако интенсивность обертонов определяется множеством факторов, среди которых форма источника звука, форма полостей в нем, материал, из которого он изготовлен, и многие другие параметры. Сочетание этих параметров определяет, какие обертоны будут иметь большую интенсивность, какие — меньшую. Таким образом, многообразие возможных значений параметров порождает различные тембры, наделяющие звук особым звучанием.

Звук, издаваемый инструментом, обладает следующими четырьмя характеристиками, связанными с распространением звуковых волн:

атака — время от начала игры на инструменте до момента, когда звук достигает наибольшей высоты;

спад — временной интервал от точки наибольшей высоты до момента стабилизации звука;

задержка — время, в течение которого извлечение звука продолжается, а его высота остается неизменной;

затухание — время, в течение которого высота звука падает после того, как было прекращено извлечение звука.

График соответствующий извлечению звука постоянной частоты Суперпозиция - фото 186

График, соответствующий извлечению звука постоянной частоты.

Суперпозиция волн

При построении графика звуковой волны образуется кривая, которая получается наложением друг на друга отдельных волн, соответствующих основному звуку и его обертонам. Рассмотрим простой пример наложения волн для двух звуков одинаковой частоты, но разной высоты. Если фазы звуковых колебаний совпадают, амплитуда звуковых колебаний увеличивается:

Напротив если колебания находятся в противофазе то амплитуда звуковых - фото 187

Напротив, если колебания находятся в противофазе, то амплитуда звуковых колебаний уменьшается:

Каким образом эта особенность проявляется на практике Не углубляясь в - фото 188

Каким образом эта особенность проявляется на практике? Не углубляясь в подробности, скажем, что этот эффект можно наблюдать в концертных залах: многочисленный хор звучит заметно громче, чем ансамбль из четырех или восьми исполнителей, а струнный оркестр — громче, чем струнный квартет.

В более сложных случаях, например, когда звук издается музыкальным инструментом, звуковая волна будет несинусоидальной, так как она будет состоять из множества отдельных волн. Благодаря преобразованию Фурье при анализе периодических волн можно определить частоту каждой составляющей.

Функция обертонов Обертоны выражающиеся степенями двойки 2 4 8 - фото 189

Функция обертонов

Обертоны, выражающиеся степенями двойки (2, 4, 8, …), соответствуют октавам основного звука и усиливают его интенсивность. Обертоны, выражающиеся числами, кратными 3 (3, 6, 12, …), соотносятся с цепочкой квинт. Присутствие таких обертонов приводит к появлению назализованного тембра. Обертоны, выражающиеся числами ряда 5, 10, 20, …, соответствуют терциям основного звука и придают звуку теплоту. Наконец, обертоны, соответствующие диссонирующим интервалам, добавляют звуку шероховатость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика»

Представляем Вашему вниманию похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика»

Обсуждение, отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x