Косую стереографическую проекцию первым использовал при составлении карт звездного неба в IV веке н. э. греческий математик и астроном Теон Александрийский, возможно, последний управитель Александрийской библиотеки и отец известной женщины-математика Гипатии. Сегодня стереографическая проекция указывается в числе рекомендуемых для составления карт звездного неба наряду с другими азимутальными проекциями, гномонической и равнопромежуточной.
Использовать косую стереографическую проекцию для составления карт Земли предложил австрийский картограф Иоганнес Стабиус(1450–1522) . Эта проекция стала популярной благодаря немецкому математику Иоганнесу Вернеру(1468–1522) , который включил ее в перевод «Географии» Птолемея на латынь. Следует учесть, что одной из основных задач, связанных с использованием новых проекций, было не их геометрическое определение, а создание методов их построения, что в те годы происходило вручную. Так, в книге Джона Снайдера «Как Земля стала плоской» ( Flattening the Earth ) приведены некоторые методы построения стереографической и других картографических проекций.
В XVI и XVII веках эта проекция использовалась очень редко. Одним из исключений стал атлас мореплавателя и космографа Жака де Воля(ок. 1555–1597 ), который в 1583 году построил карту двух полушарий в этой проекции. Центр первого полушария располагался в Париже, центр второго, с изображением Антарктиды, был диаметрально противоположен ему. Эта проекция также использовалась в картах Европы и Азии английского историка Джона Спида(1552–1629) . Хотя косая стереографическая проекция не снискала большой популярности, она применяется до сих пор: в публикации «Картографические проекции Европы» ( Map Projections for Europe , 2003) Института экологии и окружающей среды ЕС ( Institute for Environment and Sustainability ) отмечается, что эта проекция используется, например, при составлении карт Нидерландов, Польши и Румынии. Применяла ее и Геологическая служба США при составлении карт Луны, Марса и Меркурия. Кроме того, на основе этой проекции Анри Руссель в 1922 году создал новую проекцию, которая использовалась в СССР и Геологической службой США.
Благодаря богатству геометрических свойств стереографическая проекция нашла применение во многих областях науки, в частности в таких разделах математики, как комплексный анализ, неевклидова геометрия, дифференциальная геометрия, аналитическая геометрия и топология. Эта проекция используется в физике, структурной геологии и инженерном деле, а также применяется в кристаллографии для изучения свойств симметрии кристаллов, так как благодаря конформности она сохраняет углы между гранями и ребрами кристаллов. В фотографии эта проекция используется при конструировании широкоугольных объективов типа «рыбий глаз» с максимально широким углом обзора.
Фотографии, выполненные в стереографической проекции широкоугольным объективом типа «рыбий глаз», стали популярными в фотоискусстве
(источник: Александр Дюре-Лутц).
Конформные проекции особенно удобны, когда важны углы или направления (румбы), например в морской и воздушной навигации. Помимо уже упомянутых ортодром, в навигации важную роль играют локсодромы (кривые, пересекающие меридианы под постоянным углом), так как при прокладке курса вдоль локсодромы нужно всего лишь держаться одного и того же румба, указываемого, например, стрелкой компаса. По этой причине сохраняется актуальность проекции Меркатора, в которой локсодромы изображаются прямыми, следовательно, их можно легко начертить на карте. Так как эти проекции сохраняют величины углов, они также применяются в геодезии, метеорологии (для изображения, например, направлений ветров или перпендикулярных им изобар) и океанографии. Они также находят применение при анализе распространения волн, например сейсмических или радиоволн, которое, как известно, происходит радиально: не будем забывать, что в конформных проекциях окружности изображаются как окружности или прямые. Наконец, как показала американский биоматематик Моника Хёрдал из Университета штата Флорида, конформные проекции важно использовать при составлении карт мозга.
Читать дальше