Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь есть возможность читать онлайн «Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 28. Математика жизни. Численные модели в биологии и экологии.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 28. Математика жизни. Численные модели в биологии и экологии.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 28. Математика жизни. Численные модели в биологии и экологии.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наконец, представим на графике число бактерий у( t ) для каждого момента времени t . Заметим, что для данного начального значения численности бактерий у(0) и определенного значения параметра r с помощью компьютера можно получить значения численности бактерий в разные моменты времени, то есть у(0), у(1), у(2)…, у(100). Эта последовательность чисел называется орбитой. Зададимся вопросом: куда будет направлена эта орбита? Иными словами, каким будет окончательное значение численности популяции?

Чтобы ответить на этот вопрос, проведем все эксперименты согласно вышеописанному принципу, выполнив необходимые расчеты для соответствующих значений r .

В эксперименте № 1 бактерии вымрут: по прошествии определенного времени в сосуде не останется ни одной бактерии. Однако с математической точки зрения популяция достигнет равновесия — это происходит, когда численность популяции не меняется, то есть уровень ее изменения у' , или, что аналогично, dy / dt , будет равен 0.

В нашем эксперименте численность популяции достигла так называемого точечного аттрактора у = 0, то есть популяция бактерий вымерла. Это одно из возможных состояний, к которому может прийти любая популяция. Аттрактор — не более чем точка или множество точек, к которым стремится или приближается динамическая система, в нашем эксперименте это орбита, образованная значениями численности бактерий. Равновесие означает, что система достигла аттрактора и находится в стабильном состоянии, так как dy / dt = 0. Значение у при этом совершенно неважно.

Точечный аттрактор Участь популяции бактерий в эксперименте 2 будет не - фото 60

Точечный аттрактор.

Участь популяции бактерий в эксперименте № 2 будет не столь печальной. Эта популяция также достигнет точки равновесия, однако численность бактерий зафиксируется в точечном аттракторе у = 0,6. В эксперименте № 3 численность бактерий будет колебаться между определенным максимальным и минимальным значениями в зависимости от того, в какой момент времени t производится подсчет численности. В этом случае также говорят, что система достигла равновесия.

Эта разновидность аттрактора называется предельным циклом. Речь идет о замкнутой орбите, характерной для систем, в которых наблюдаются колебания. С геометрической точки зрения аттрактор действует подобно сточной трубе. Он может представлять собой точку, кривую или даже фрактал. Следовательно, стабильные системы, к примеру, рассматриваемая колония бактерий, — это системы, которые по прошествии определенного времени стремятся к некоторому аттрактору, в то время как нестабильные системы от аттракторов удаляются.

Предельный цикл Что же произойдет в последнем четвертом эксперименте Сразу - фото 61

Предельный цикл.

Что же произойдет в последнем, четвертом эксперименте? Сразу же видно, что колебания численности популяции не подчинены никакой закономерности и являются абсолютно хаотическими. В подобных случаях определить точную численность бактерий невозможно: она заметно отличается в зависимости от того, в какой момент мы производим подсчет. Кроме того, в отличие от первых трех экспериментов, в этом случае изменение численности бактерий не подчиняется какой-либо схеме. Можно сделать вывод: хаос есть отсутствие закономерности колебаний. Подобное поведение наблюдается при достижении критического значения параметра дифференциального уравнения. В нашем эксперименте этим критическим значением является r = 3,6.

В этом случае орбита значений численности бактерий у(0), у(1), у(2)…, у(100) приближается к так называемому странному аттрактору. Он описывает поведение таких динамических систем, как климат на Земле, поведение биржевых индексов или электроэнцефалограмма человека.

Странный аттрактор Изучение природы шаг за шагом В предыдущей главе вы - фото 62

Странный аттрактор.

Изучение природы шаг за шагом

В предыдущей главе вы познакомились с тем, как математическая биология изучает биологические системы и явления с помощью дифференциальных уравнений. Однако их использование — не единственный метод изучения динамических систем, а следовательно, не единственный метод моделирования биологических явлений. Ввиду все более широкого использования компьютеров еще одним популярным методом являются функции, или отображения. Их применение кажется более простым, чем использование дифференциальных уравнений. Классическим примером является ло

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Представляем Вашему вниманию похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Паустовский - Том 5. Повесть о жизни. Книги 4-6
Константин Паустовский
Константин Паустовский - Том 4. Повесть о жизни. Книги 1-3
Константин Паустовский
Отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Обсуждение, отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x