Несколько позже Бертран Рассел(1872–1970) и Альфред Норт Уайтхед(1861–1947) удивили весь научный мир, создав на заре XX века (в 1910–1913 годах) невероятно сложный и почти недоступный для понимания трехтомный труд по логике, который, вслед за Ньютоном, назвали «Начала математики». Очевидное для непосвященных равенство «1 + 1 = 2», вынесенное в заголовок этой главы, во втором томе книги приводилось как теорема под номером 54.43, а весь первый том, можно сказать, подготавливал для него почву. Чтобы вы могли оценить всю «увлекательность» «Начал математики», приведем лишь один факт: редакция одной уважаемой газеты учредила премию для того, кто докажет, что прочел всю книгу. Премия так и осталась невостребованной. Какое-то время в редакции теплилась надежда, что хотя бы один из соавторов прочел книгу целиком, но эти ожидания были напрасными: и Уайтхед, и Рассел прочли только лично написанную часть труда.
Фрагмент «Начал математики», в котором приводится строгое доказательство равенства 1 + 1 = 2. Сначала, как иронично указано в тексте (здесь явно слышится шутливый тон Рассела), нужно определить операцию сложения.
Небольшие ошибки
Огюстен ЛуиКоши (1789–1857) как-то раз получил по почте объемный труд по теории чисел, в котором доказывалось, что диофантово уравнение
x 3+ y 3+ z 3= t 3
не имеет целых решений. Коши, который отличался саркастичным и довольно насмешливым характером, отправил автору трактата письмо, состоявшее из одной строки:
3 3+ 4 3+ 5 3= 6 3.
Нечто подобное произошло с прекрасным французским математиком Альфонсом де Полиньяком(1817–1890) , известным сегодня как автор гипотезы о простых числах, представляющей собой обобщение гипотезы Гольдбаха. Полиньяк провозгласил:
Любое нечетное число можно представить как сумму степени двойки и простого числа.
Гипотеза не только впечатляла, но и выглядела вполне правдоподобно. Рассмотрим любое число, например 63:
63 = 2 5+ 31.
Так как 31 простое, то, похоже, гипотеза Полиньяка верна. Прибавим еще один факт: Полиньяк дал понять, что проверил свою гипотезу для всех чисел вплоть до 3000000. Однако, видимо, в его вычисления вкралась ошибка: уже для числа 127 гипотеза не выполняется. Перечислим шесть первых степеней двойки и убедимся в том, что это и в самом деле так:
127 = 2 1+ 125 = 2 1+ 5·25;
127 = 2 2+ 123 = 2 2+ 3·41;
127 = 2 3+ 119 = 2 3+ 7·17;
127 = 2 4+ 111 = 2 4+ 3·37;
127 = 2 5+ 95 = 2 5+ 5·19;
127 = 2 6+ 63 = 2 6+ 3·21.
Однако следующей степенью двойки будет уже 2 8= 128 — число, большее 127. Таким образом, несмотря на заявления Полиньяка, его гипотеза не выполняется для числа 127.
Удивительные расчеты
Следующая история произошла на собрании Американского математического общества в октябре 1903 года. Математик Фрэнк Нельсон Коул(1861–1926) должен был выступить с докладом на тему «О разложении больших чисел на множители».
Выступление Коула было не совсем обычным: он поднялся с места, подошел к доске и записал на ней 2 67—1 — число Мерсенна М 67, которое считалось простым. Далее Коул вычислил значение 267 и вычел из него 1. Присутствующие затаили дыхание, а Коул записал на доске еще два числа и вычислил их произведение: 193707721 x 761838257287. Полученное число 147573952589676412927, как и ожидалось, было равно искомому числу М 67. Коул развернулся и проследовал на свое место.
Его доклад длился целый час, и за это время ученый не произнес ни слова. Однако аудитория все равно разразилась аплодисментами.
Следует отметить, что в 1903 году еще не существовало ни калькуляторов, ни алгоритмов, которые используются для работы с числами Мерсенна сегодня. По словам Коула, все необходимые расчеты он провел «за три года по воскресеньям».
В честь этого математического подвига Американское математическое общество учредило премию Коула, которая и сегодня остается очень престижной. За поиском простых чисел Мерсенна можно следить в интернете на сайте проекта Great Internet Mersenne Prime Search ( http://www.mersenne.org/default.php). Самым большим простым числом, известным на февраль 2013 года, было М 57885161— действительно большое число, состоящее из 17 425 170 цифр. И еще: М 5788М61начинается с цифры 5. Больше об этом числе — ни слова.
Очень большое число
В математике можно говорить о сколь угодно больших числах — конечных, но очень больших, огромных, колоссальных. В 1938 году девятилетний племянник известного математика Эдварда Казнера(1878–1955) придумал число гугол , которое казалось ему невообразимо большим, практически бесконечным. Милтон Сиротта — так звали племянника — определил гугол как единицу, за которой следует 100 нулей.
Читать дальше