Саймон Сингх - Симпсоны и их математические секреты

Здесь есть возможность читать онлайн «Саймон Сингх - Симпсоны и их математические секреты» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Симпсоны и их математические секреты: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Симпсоны и их математические секреты»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Симпсоны и их математические секреты», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Таким образом, напрашивается очевидный вывод: демократы продемонстрировали более активную поддержку Закона о гражданских правах, чем республиканцы. Однако если объединить данные по южным и северным штатам, получится, что за принятие закона проголосовали 80 процентов республиканцев и 61 процент демократов.

Другими словами, я утверждаю, что на севере и юге в отдельности демократы отдали больше голосов в поддержку закона, чем республиканцы, но в совокупности республиканцы опережают демократов! Как бы абсурдно это ни звучало, это бесспорный факт. В этом и состоит парадокс Симпсона.

Для того чтобы понять смысл данного парадокса, целесообразно проанализировать не проценты, а фактическое количество голосов. Демократы северных штатов отдали в поддержку закона 145 из 154 голосов (94 процента), тогда как республиканцы – 138 из 162 голосов (85 процентов). В южных штатов картина такая: демократы – 7 из 94 голосов (7 процентов), республиканцы – ноль из 10 голосов (0 процентов). Как уже было сказано, поддержка закона демократами на первый взгляд кажется более сильной, чем республиканцами, причем как на севере, так и на юге. Тем не менее в масштабах всей страны тенденция меняется на противоположную, поскольку за принятие закона проголосовали 152 из 248 демократов (61 процент) и 138 из 172 республиканцев (80 процентов).

Так как же нам объяснить этот пример парадокса Симпсона Здесь есть четыре - фото 37

Так как же нам объяснить этот пример парадокса Симпсона? Здесь есть четыре момента, которые проливают свет на загадку парадокса. Во-первых, сравнивая результаты голосования республиканцев и демократов, мы должны анализировать всю совокупность данных (в целом по стране). Это позволит прийти к заключению, что республиканцы поддержали Закон о гражданских правах более активно, чем демократы. Таким и должен быть окончательный вывод.

Во-вторых, хотя наша задача – проанализировать разницу между результатами голосования республиканцев и демократов, реально поражают различия между представителями северных и южных штатов независимо от того, к какой политической партии они принадлежат. В северных штатах США закон получил примерно 90-процентную поддержку, тогда как в южных она составила всего 7 процентов. Когда мы фокусируемся на одной переменной (например, демократы в сравнении с республиканцами), уделяя меньше внимания более важной переменной (например, север в сравнении с югом), то ее часто называют скрытой переменной .

В-третьих, во многих ситуациях проценты действительно имеет смысл использовать для сравнения, но в данном случае, начав с анализа одних только процентов, мы не приняли во внимание фактическое количество голосов, из-за чего не смогли оценить значимость определенных результатов. Например, 0 процентов голосов в пользу принятия закона, отданных республиканцами южных штатов, кажутся заслуживающими осуждения, но ведь южные штаты представлены всего 10 республиканцами; и если бы хоть один из них проголосовал за принятие закона, то поддержка южных республиканцев возросла бы с 0 до 10 процентов и превзошла бы поддержку демократов, составившую всего 7 процентов.

И последний, самый важный фрагмент этих данных – результаты голосования южных демократов. Ключевой момент здесь состоит в том, что в южных штатах поддержка закона была гораздо меньше, чем в северных, и южные штаты избирали преимущественно демократов, слабая поддержка закона которыми снизила средний показатель для всех представителей Демократической партии. Именно этим объясняется разворот тенденции в случае анализа всей совокупности данных.

Показательно, что результаты голосования за принятие Закона о гражданских правах 1964 года не относятся к числу редких статистических странностей. Подобный разворот тенденции в процессе интерпретации данных, который называют парадоксом Симпсона, создает путаницу во многих ситуациях, от спортивной статистики до медицинских данных.

Прежде чем закончить эту главу, хочу обратить ваше внимание на то, что в мире математики есть и другие Симпсоны. Например, имя Симпсон увековечено в так называемом правиле Симпсона – методе математического анализа, позволяющем рассчитать площадь под любой кривой. Этот метод назван по имени британского математика Томаса Симпсона (1710–1761), который в возрасте пятнадцати лет стал преподавателем математики в английском городе Нанитон. Восемь лет спустя, по данным историка Никколо Гуиччардини, он совершил одну из тех ошибок, которая может случиться с каждым из нас, и был «вынужден бежать в 1733 году в Дерби после того, как он или его помощник напугал девушку, одевшись как дьявол во время астрологического сеанса».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Симпсоны и их математические секреты»

Представляем Вашему вниманию похожие книги на «Симпсоны и их математические секреты» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Симпсоны и их математические секреты»

Обсуждение, отзывы о книге «Симпсоны и их математические секреты» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x