Второе направление, которое Владимир Модестович назвал техническим, есть вычисление без строгого учёта погрешностей. Основной его принцип сформулирован академиком А.Н. Крыловым; результат всякого вычисления есть число. Его следует писать так, чтобы по начертанию можно было судить о степени точности; для этого примем за правило писать число так, чтобы в нём все значащие цифры кроме последней были верны, и лишь последняя цифра была бы сомнительной и притом не более, как на одну единицу. Желание выполнить последнее требование принципа приводит к тому, что приходится следить за тем, чтобы абсолютная погрешность каждого приближенного результата была не более единицы разряда последней его цифры. Тогда, в сущности, происходит вычисление со строгим учётом погрешностей. Сам А.Н. Крылов и некоторые другие не следили за буквальным выполнением последнего требования, допуская некоторую неопределённость границы погрешности последней сохраняемой цифры результата. В силу этой неопределённости техническое направление не пользовалось доверием методистов и в школе не применялось.
Третье направление, которое Владимир Модестович назвал геодезическим, основано на теории вероятности. Здесь исследуется не только предельная погрешность приближенного значения, но и вероятности различных значений этих отклонений.
в работах данного направления нет достаточно удобных общих правил, вследствие чего требуются дополнительные усилия, чтобы устанавливать, какие цифры результата каждого действия над приближенными значениями величин следует сохранять.
Детально изучив все три направления, Владимир Модестович Брадис пришёл к выводу, что ни первое, ни третье направление не могут быть основными для постоянно применяемых вычислений в школе. Второе направление — вычисление без строгого учета погрешностей — подкупает простотой практических правил, но не пользуется доверием в силу некоторой их неопределённости. В.М. Брадис решил попытаться дать теоретическое обоснование этим правилам. Обнадёживающим было то обстоятельство, что правила имели успешное применение на практике как самим А.К. Крыловым, так и другими математиками. В 1922 г. В.М. Брадис занялся поисками обоснования. Надо было выяснить, каковы предельные погрешности результатов отдельных действий над приближенными данными с определённым числом цифр, и каково распределение фактических погрешностей результатов. Намеченный путь исследования оказался правильным. Первые итоги исследования были опубликованы в 1923 г. в статье «Приближенные вычисления в школьном курсе математики», напечатанной в сборнике «Вопросы математики и её преподавание» под редакцией И.И. Чистякова и Н.М. Соловьёва (М., 1923). Здесь были рассмотрены смысл, методика и преимущества способа границ погрешностей и обоснован способ вычисления по правилам, которые В.М. Брадис назвал «правилами подсчёта цифр», а следовало бы их называть «правилами Брадиса». Было показано, что они вполне приемлемы для учащихся средних школ и полностью ликвидируют «нелепые хвосты ненужных цифр» при решении задач, взятых из жизни.
Более глубокое исследование вопроса о предельных погрешностях и распределении фактических погрешностей результатов действий сложения, умножения, возведения в квадрат и в куб и обратных им действий было дано Владимиром Модестовичем в двух теоретических работах: «Умножение приближенных чисел» в 1925 г. и «Опыт обоснования некоторых практических правил действия над приближенными числами» в 1927 г. Они вполне подтвердили целесообразность правил подсчёта цифр, сформулированных в 1923 г.
Две последние работы представляют собой результат основного исследования В.М. Брадиса, явившийся итогом большого труда. В последней статье на основе теоретико-вероятностных методов даётся обоснование правилам численных расчётов с приближенными данными при нестрогом учёте погрешностей, ранее интуитивно полученных различными вычислителями, в частности А.Н. Крыловым. На основе проделанной работы формулируется принцип записи результатов действий в предположении, что погрешность каждого приближенного компонента не превосходит полуединицы разряда последней его цифры, и что все значения этой погрешности равновероятны. Этот принцип состоит в следующем: приближенное число надо писать так, чтобы в нём все значащие цифры кроме последней были верны, и лишь последняя цифра была бы сомнительной, и притом «в среднем», не более как на одну единицу. Доказано, что чем больше погрешность, тем меньше вероятность её появления. Термин «в среднем» понимается в том смысле, что речь здесь идёт не о границах погрешности, а о средней квадратической погрешности, т.е. о корне квадратном из среднего значения квадрата погрешности. В формулировке принципа записи результата действий над приближенными данными, предложенной академиком A.Н. Крыловым, отсутствует термин «в среднем». В.М. Брадис доказал, что необходима указанная выше поправка. А.Н. Крылов приветствовал это исследование Владимира Модестовича.
Читать дальше