Вячеслав Воробьев - 12 тверских математиков

Здесь есть возможность читать онлайн «Вячеслав Воробьев - 12 тверских математиков» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Тверь, Год выпуска: 2010, Издательство: Седьмая буква, Жанр: Математика, История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

12 тверских математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «12 тверских математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

С Тверской землёй связаны судьбы и деятельность видных российских учёных в разных отраслях науки. Вниманию читателей предлагается сборник биографических очерков о математиках, чьи труды стали достоянием фундаментальной науки, педагогики, нашли применение в технике и военном деле: Л.Ф. Магницком, С.Я. Румовском, Д.С. Чижове, Н.В. Маиевском, И.А. Вышнеградском, В.И. Смирнове, В.М. Брадисе, Г.М. Голузине, А.И. Маркушевиче, П.П. Коровкине, Н.М. Афанасьеве, Е.В. Золотове.

12 тверских математиков — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «12 тверских математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пятый фактор, способствующий успеху в работе Владимира Модестовича, заключался в том, что он свою научно-исследовательскую и педагогическую деятельность проводил в течение полувека в одном и том же высшем учебном заведении — Калининском педагогическом институте, в котором работал с 1921 по 1973 год. Здесь он начал свою учёную карьеру, здесь он рос, достиг известности и признания и принёс славу институту. Оппоненты, приезжавшие из других городов на защиты (например, Р.А. Хабиб), говорили, что они гордятся тем, что им пришлось выступить в институте, в котором работает их общий учитель, признанный авторитет по методике преподавания математики и по теории приближенных вычислений — профессор В.М. Брадис.

Три направления научно-исследовательской деятельности Владимира Модестовича Брадиса

I. Теоретическая и методическая разработка вопросов, связанных с повышением вычислительной культуры учащихся

В научно-исследовательской работе В.М. Брадиса можно выделить три направления. Первое, являющееся основным, сосредоточено на теоретической и методической разработке вопросов, связанных с повышением вычислительной культуры учащихся средних школ и соответствующей подготовкой учителей, призванных выполнить эту задачу. Решению данной проблемы В.М. Брадис посвятил всю свою жизнь. Идея возникла в студенческие годы, когда ему пришлось самому встретиться с необходимостью производить вычисления и наблюдать за работой других вычислителей. Здесь он убедился, что многие испытывают большие трудности вследствие того, что не владеют приёмами вычислений с приближенными данными. К этому времени имелись труды академика-кораблестроителя Алексея Николаевича Крылова. Но требовалось дальнейшее совершенствование, обоснование и пропаганда применяемых методов для использования их в школьном курсе математики. Эту задачу выполнил В.М. Брадис. Он проводит тщательное изучение вопроса и результаты исследования излагает в своих работах. Подвергая жестокой критике существующие сборники задач, Владимир Модестович с горечью отмечает, что «вопрос о недопустимом расхождении между вычислительной работой учащихся средней школы и практическими требованиями жизни вот уже более века является одним из нерешённых вопросов методики преподавания математики» (В.М. Брадис. Вычислительная работа в курсе математики средней школы. М., 1962. С. 3). Действительно, школа учит учащихся вычислительной работе на решении надуманных задач и формул с искусственно подобранными данными, при которых деления совершаются без остатка, корни извлекаются нацело, ответы выражаются натуральными числами.

Владимир Модестович отмечает, что за последние 50 лет математическая наука и её практические приложения шагнули далеко вперёд, а школьные задачники делают по части вычислительной культуры весьма робкие шаги, не вносящие заметного улучшения в повышение вычислительной культуры. Причинами застоя, по мнению В.М. Брадиса, являются, во-первых, сила традиций и, во-вторых, недостаточная разработанность научной основы практических приёмов вычислений с приближенными данными. Решением этих проблем В.М. Брадис занялся с первых лет работы в институте. Он тщательно анализирует три выделившихся в теории вычислений направления.

Первое, которое он называет классическим, — вычисление со строгим учётом погрешностей. Оно проявляется в двух видах. 1) способ границ погрешностей, когда указывается предельная, т.е. наибольшая абсолютная или относительная погрешность всякого приближенного значения, и 2) способ границ, когда указывается низшая и высшая граница, между которыми заключено приближенное число. В методической литературе рассматривается только способ границ погрешностей, в то время как способ границ более прост по идее, строже по существу и имеет применение в научной работе. Им пользовался Архимед (287—212 гг. до н.э.). Он, например, вычислив с большой точностью число ПИ, указал две границы приближенного его значения: 310/71 ПИ <3 1/7. Способ границ погрешностей, теоретически разработанный, в школе применим мало, так как требует, во-первых, значительных дополнительных расчётов и, во-вторых, обоснований используемых теорем, которые доступны учащимся старших классов.

Способ границ вполне доступен учащимся 7-х и даже 6-х классов, но обоснование его совершенно не рассматривается в методической литературе. В силу сказанного ни один из них не может стать основным способом в школьных вычислениях.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «12 тверских математиков»

Представляем Вашему вниманию похожие книги на «12 тверских математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «12 тверских математиков»

Обсуждение, отзывы о книге «12 тверских математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x