Людмила Наумова - Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью

Здесь есть возможность читать онлайн «Людмила Наумова - Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1854 году в Геттингене Риман прочитал знаменитую лекцию «О гипотезах, лежащих в основании геометрии», где дал расширенное понятие пространства. Проникая в глубину мысли Римана автор логически констатирует следующее: римановых многообразий в широком смысле, в понятии, которому придавал сам Риман бесчисленное множество, и они существуют в реальном мире. Реальные пространства, их структура (формула) выявляются нейронными сетями.

Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Это пример четырехкратно протяженного многообразия с разными величинами (пространство и время), а значит и разными метриками. Эйнштейном, использовано многообразие с величинами разной метрики. А почему бы это не распространить, не обобщить и не пойти дальше? Почему бы не сконструировать многообразие сколь угодной многократной протяженностью (т.е. размерностью), где метрика у каждой протяженности (размерности) может быть разной? Ведь это тоже многократно протяженное пространство (многообразие) в широком смысле слова – это связанное множество по определенным характеристикам и характеристики – это измерения, которые имеют свою метрику. Тогда вопроса «а где в жизни, в реальном мире эти многообразия (пространства)?» больше нет. Они везде. Далее мы это вам покажем.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью»

Представляем Вашему вниманию похожие книги на «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Андрей Иоанн Романовский-Коломиецинг - Духовное. Учение формулы структуры мира
Андрей Иоанн Романовский-Коломиецинг
Отзывы о книге «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью»

Обсуждение, отзывы о книге «Римановы пространства. Распознавание формул (структур) римановых многообразий нейронной сетью» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x