ax 2 + ( b – m ) x + ( c – n ) = 0
ax 2 + b 1 x + c 1 = 0.
Таким образом, уравнения двух приведённых выше видов
ax 2 + bx + c = m и ax 2 + bx + c = mx + n есть смысл назвать сводящимися к квадратным. То есть, если в правой части стоит многочлен с одной (той же, что и в левой части!) неизвестной степени не выше первой, то с помощью соответствующих преобразований квадратное уравнение мы получим без проблем.
Если же в правой части будет стоять многочлен с одной неизвестной второй степени, то квадратное уравнение может и не получиться.
Ситуация первая: ax 2 + bx + c =ay 2 + by + c.
Как бы ни старались, квадратного уравнения мы не получим. Неизвестных две, и это равенство не входит в множество математических объектов «квадратные уравнения». Вывод: неизвестная правой части должна быть такой же, что и в левой!
Ситуация вторая. Преобразуйте самостоятельно, например, два следующих уравнения:
ax 2 + bx + c = kx 2 + mx + n
ax 2 + bx + c = ax 2 + mx + n .
Получилось ли у вас квадратное уравнение в первом случае? А во втором? Как будет называться уравнение, которое сведётся не к квадратному?
Определите условие, при котором уравнение такого вида всё-таки будет сводиться к квадратному 4 4 В конце книги есть раздел «Комментарии». Можете сверить свои идеи и мысли.
.
Как ещё один пример рассмотрите уравнение
x 2 – 9 = ( x – 5) ( x +7).
Таким образом, наличие второй степени неизвестной в записи уравнения не всегда будет означать, что оно квадратное.
Очевидно, что если в правой части стоит многочлен с одной переменной степени выше второй , то квадратного уравнения мы ни при каких условиях не получим.
Итак, есть квадратные уравнения, а есть уравнения, сводящиеся к квадратным.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
В одной переводной книжке середины двадцатого века мы нашли ещё одно название для коэффициента c – «абсолютный».
Подробнее смотрите в приложении.
О равносильности опять же смотри приложение.
В конце книги есть раздел «Комментарии». Можете сверить свои идеи и мысли.