Рафаель Роузен - Математика для гиков

Здесь есть возможность читать онлайн «Рафаель Роузен - Математика для гиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика для гиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика для гиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Математика для гиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика для гиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.14. Как аудиозапись становится цифровым музыкальным файлом?

Математическое понятие: преобразование Фурье

Кто бы мог подумать, что iPod и математика тесно связаны друг с другом? Оказывается, когда вы загружаете песню на компьютер или проигрываете цифровой музыкальный файл на плеере, вы пользуетесь математическим уравнением под названием преобразование Фурье.

Звучит странно, но представьте, что это своего рода инструмент: в сущности, он разделяет сложные волны на множество маленьких и соединяет простые волны обратно в сложные. И это могут быть почти любые виды волн, включая звуковые и световые. Когда звукорежиссеры хотят конвертировать аудиозапись в МР3-файл, они используют преобразование Фурье, чтобы выбрать отдельные частоты звуковой волны и отметить их амплитуду в каждый момент времени. Затем, если они хотят сжать файл, чтобы его было легче передавать через Интернет, они могут удалить частоты, которые человеческое ухо не может услышать. С другой стороны, звук на виниловой пластинке представляет собой цельную звуковую волну, частоты на ней нетронуты.

Человеческое ухо также может выполнять преобразование Фурье. В любой момент одна сложная звуковая волна входит в ухо, где происходит вибрация барабанной перепонки, и производит электрические волны, которые мозг потом анализирует и преобразовывает. Но вы никогда не слышите эту одну волну, вместо этого вы слышите человека, который слева от вас разговаривает по телефону, автобус, который сигналит автомобилю справа, щебечущую над вами птицу, которая сидит на дереве. Эта одна волна была разбита на составные части, и теперь вы можете выявить отдельные частоты и звуки и тем самым лучше взаимодействовать с миром.

Преобразование Фурье также можно встретить и в архитектуре, особенно в сейсмоопасных районах. Как и любой другой объект, каждое здание в городе вибрирует на своей собственной частоте. Представим здание в городе, в котором произошло землетрясение. Если колебания от землетрясения совпадают с естественным колебанием здания, колебания усилятся, и у такого здания вероятность разрушения становится выше. (Частота и сила колебаний – это два разных измерения.) Чтобы избежать разрушения, инженеры могут использовать преобразование Фурье для анализа отдельных частот типичных землетрясений в конкретном месте и потом «настроить» здание так, чтобы его частоты не совпадали с частотами землетрясений, которые чаще всего происходят в районе. Математика может буквально спасать города от разрушения.

Жан Батист Жозеф Фурье

Преобразование Фурье названо в честь Жана Батиста Жозефа Фурье, французского математика (1768–1830). Он его разработал, когда пытался определить, как тепло передается между твердыми телами.

315 Сколько цветов нужно чтобы нарисовать карту Математическое понятие - фото 89

3.15. Сколько цветов нужно, чтобы нарисовать карту?

Математическое понятие: проблема четырех красок

Вы или ярый сторонник карт Google, или приверженец традиционных бумажных карт, но карты окружают нас повсюду. Они полезны и, несмотря на иногда возникающие трудности со складыванием, очень удобны. Зачастую они еще и очень красивые. (Посмотрите на карты из Средневековья, чтобы получить представление о художественности, которая вкладывалась в создание карт.) Карты также являются источником для одной из самых известных идей в математике: проблемы четырех красок.

Фрэнсис Гатри, английский студент, изучающий математику, впервые предложил проблему в 1852 году, когда пытался раскрасить карту округов Англии. Понимая, что ему необходимо всего четыре цвета, он задался вопросом, а нельзя ли применить это правило ко всем картам, даже к тем, которые еще не были созданы. Точнее говоря, Гатри интересовало, можно ли раскрасить карту, используя не больше четырех цветов, так, чтобы у двух граничащих территорий – округов, штатов, стран, чего угодно – не совпадали цвета. (Такие две территории должны иметь четкую границу. Если территории граничат углами, как штаты Юта и Нью-Мексико, то они не в счет.) Доказательство было наконец предоставлено в 1976 году, спустя 124 года после того, как Гатри задал этот вопрос, Кеннетом Аппелем и Вольфгангом Хакеном, математиками из Иллинойсского университета в Урбане-Шампейне. И хоть это было значительное достижение, доказательство вызвало неоднозначную реакцию в математическом сообществе, так как оно использовало компьютер.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика для гиков»

Представляем Вашему вниманию похожие книги на «Математика для гиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика для гиков»

Обсуждение, отзывы о книге «Математика для гиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x