Иэн Стюарт - Величайшие математические задачи

Здесь есть возможность читать онлайн «Иэн Стюарт - Величайшие математические задачи» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Альпина нон-фикшн, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Величайшие математические задачи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Величайшие математические задачи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Величайшие математические задачи — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Величайшие математические задачи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Здесь в качестве начального пункта берется существование пифагоровых троек и формула для них, а затем вся проблема переводится в третье измерение. Эйлеров параллелепипед — это кубоид (блок в форме кирпича) с целыми ребрами, все грани которого имеют целые диагонали. Самый маленький параллелепипед Эйлера открыл в 1719 г. Пауль Хальке. Его ребра составляют 240, 117 и 4; диагонали граней равны 267, 244 и 125. Эйлер нашел формулы для таких прямоугольных параллелепипедов, аналогичные формуле для пифагоровых троек, но они выдают не все возможные решения.

Неизвестно, существует ли совершенный кубоид, т. е. существует ли такой параллелепипед Эйлера, главная диагональ которого тоже имеет целую длину. (Главная диагональ — это отрезок, соединяющий противоположные вершины прямоугольного параллелепипеда и проходящий сквозь его внутреннюю часть. Таких отрезка четыре, но все они равны по длине.) Известно, что формулы Эйлера не дают примера такого параллелепипеда. Он, если существует, должен удовлетворять нескольким условиям — к примеру, по крайней мере одно его ребро должно быть кратно 5, другое — 7, третье — 11, четвертое — 19. Компьютерные эксперименты показали, что длина одного из ребер должна быть не менее одного триллиона.

Есть достаточно близкие варианты. У прямоугольного параллелепипеда со сторонами 672, 153 и 104 главная диагональ целая, как и две из трех диагоналей граней. В 2004 г. Хорхе Сойер и Клиффорд Рейтер доказали, что существуют совершенные непрямоугольные параллелепипеды. Грани таких параллелепипедов представляют собой не прямоугольники, а параллелограммы, а сам параллелепипед как бы скошен на сторону. Ребра совершенного непрямоугольного параллелепипеда имеют длины 271, 106 и 103; малые диагонали граней равны 101, 266 и 255; большие диагонали граней — 183, 312 и 323; внутренние диагонали (а у такого параллелепипеда они все разные) имеют длины 374, 300, 278 и 272.

Гипотеза об одиночестве бегуна

Эта задача из трудной для понимания области математики, известной как теория диофантовых приближений. Сформулировал ее в 1967 г. Йорг Виллс. А название — гипотеза одинокого бегуна — придумал в 1998 г. Луис Годдин. Положим, что n бегунов бегают по кольцевой дорожке единичной длины с постоянной скоростью, причем скорости всех бегунов различны. Можно ли утверждать, что каждый из бегунов в какой-то момент времени окажется одиноким, т. е. будет находиться на расстоянии более 1/ n от остальных? Разумеется, для разных бегунов это будут разные моменты времени. Гипотеза состоит в том, что ответ всегда «да»; на данный момент она доказана для n = 4, 5, 6 и 7.

Гипотеза Конвея о трекле

Трекл — это сеть, размещенная на плоскости таким образом, что каждые два ее ребра имеют ровно одну общую точку (см. рис. 48). Встречаться они могут либо в вершине, либо в точке пересечения, но не то и другое одновременно. Если они пересекаются, то обязательно поперек; это значит, что ни одно из них не может целиком остаться по одну сторону от другого (а это могло бы произойти, если бы они, скажем, соприкасались). Джон Конвей в неопубликованной работе высказал гипотезу о том, что в любой сети такого рода число линий меньше или равно числу точек. В 2011 г. Радослав Фулек и Янош Пач доказали, что любая такая сеть с n точками имеет не более 1,428 n линий.

Иррациональность постоянной Эйлера Не существует готовой замкнутой формулы - фото 74

Иррациональность постоянной Эйлера

Не существует готовой «замкнутой» формулы для суммы гармонического ряда

Более того такой формулы по всей вероятности не существует Однако - фото 75

Более того, такой формулы, по всей вероятности, не существует. Однако существует прекрасная ее аппроксимация: по мере того как n увеличивается, Hn стремится к log n + γ. Здесь γ — постоянная Эйлера, численно равная примерно 0,5772156649. Эйлер вывел эту формулу в 1734 г., а Лоренцо Маскерони изучал постоянную в 1790 г. Ни тот, ни другой не использовали символ γ.

Постоянная Эйлера — одно из тех странных чисел, которые время от времени возникают в математике (вспомните π и e); у них нет красивого или простого выражения, они то и дело появляются в самых разных местах, но при этом складывается впечатление, что они существуют сами по себе. В главе 3 мы убедились, что и π, и e трансцендентны: они не являются решениями каких-либо алгебраических уравнений с целыми коэффициентами. Они иррациональны: не выражаются точными дробями. Многие математики считают, что постоянная Эйлера трансцендентна, но мы даже не знаем наверняка, иррациональна ли она. Если все же γ = p / q для целых p и q , то q равняется по крайней мере 10 242 080.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Величайшие математические задачи»

Представляем Вашему вниманию похожие книги на «Величайшие математические задачи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Величайшие математические задачи»

Обсуждение, отзывы о книге «Величайшие математические задачи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x