Первоначально Ходж сформулировал свою гипотезу в терминах целых маркеров (или индексов). В 1961 г. Майкл Атья и Фридрих Хирцебрух доказали, что для высших измерений эта версия гипотезы неверна. Поэтому сегодня мы формулируем гипотезу Ходжа с использованием рациональных коэффициентов: для этой версии у нас есть некоторое количество обнадеживающих данных. Самое сильное свидетельство в ее пользу состоит в том, что одно из наиболее глубоких ее следствий — еще более технически сложная теорема, известная как теорема об «алгебраичности локусов Ходжа», уже доказана без опоры на гипотезу Ходжа. Эдуардо Каттани, Пьер Делинь и Арольдо Каплан нашли соответствующее доказательство в 1995 г.
Наконец, в теории чисел имеется симпатичная гипотеза, аналогичная гипотезе Ходжа и получившая название гипотезы Тейта в честь Джона Тейта. Она связывает алгебраическую геометрию с теорией Галуа — совокупностью идей, доказывающих, что у полиномиальных уравнений пятой степени не существует явных решений, выражаемых формулой. Формулировка гипотезы Тейта достаточно сложна: в ней фигурирует еще один вариант когомологии. Есть причины надеяться, что гипотеза Тейта верна, хотя она не доказана. Но по крайней мере можно сказать, что у гипотезы Ходжа есть разумный родич, хотя как подступиться хоть к той, хоть к другой гипотезе, пока совершенно неясно.
Гипотеза Ходжа — одно из тех математических утверждений, которые почти нечем ни подтвердить, ни опровергнуть и у которых свидетельства и в ту и другую сторону не слишком убедительны. К тому же существует опасность, что гипотеза может оказаться попросту неверной. Возможно, существует многообразие с миллионом измерений, опровергающее гипотезу Ходжа по причинам, которые сводятся к серии неструктурированных расчетов, настолько сложных, что никто и никогда не сможет их провести. Если это так, то гипотеза Ходжа может оказаться ошибочной по совершенно глупой причине — просто так получилось, — но доказать это практически невозможно. Я знаю несколько специалистов по алгебраической геометрии, которые считают именно так. В этом случае обещанному миллиону долларов в обозримом будущем ничего не грозит.
Предсказывать очень трудно, особенно будущее. По легенде, так любили говорить знаменитый физик и нобелевский лауреат Нильс Бор и знаменитый бейсболист и спортивный менеджер Йоги Берра {44}. Правда, Берра, как утверждают, еще говорил так: «Имейте в виду, я никогда не говорил большей части того, что говорил».
Артур Кларк, знаменитый своими научно-фантастическими романами и фильмом «Космическая одиссея — 2001», был, помимо всего прочего, футурологом: он писал книги о будущем техники и общества. В его книге «Очертания будущего» (Profiles of the Future), написанной в 1962 г., среди прочих предсказаний можно найти следующие:
• к 1970 г. — расшифровка языка китов и дельфинов;
• к 1990 г. — создание термоядерного реактора;
• к 1990 г. — обнаружение гравитационных волн;
• к 2000 г. — колонизация планет.
Ничего подобного пока не произошло. Но, с другой стороны, у него были и удачные предсказания:
• к 1980 г. — приземление на другие планеты (хотя он, возможно, имел в виду высадку человека);
• к 1970 г. — машины-переводчики (слегка преждевременно, но сегодня машинный перевод существует в Интернете);
• к 1990 г. — индивидуальное радио (примерно эту роль сегодня исполняют мобильные телефоны).
Он также предсказывал, что к 2000 г. у нас будет глобальная библиотека, и сегодня это предсказание ближе к истине, чем можно было подумать еще несколько лет назад (это тоже одна из функций Интернета). С развитием облачных вычислений мы, возможно, когда-нибудь все станем пользователями одного и того же гигантского компьютера. При этом Кларк упустил из виду некоторые важнейшие тенденции, такие как расцвет компьютеров и генная инженерия, хотя ее-то он как раз предсказал, но на 2030 г. Учитывая спорные суммарные результаты предсказаний Кларка, со своей стороны я бы не рискнул предсказывать будущее великих математических задач сколько-нибудь подробно. Однако могу высказать кое-какие квалифицированные догадки, не сомневаясь, однако, что большинство из них окажутся в результате ошибочными.
Во введении я упоминал список Гильберта из 23 крупных проблем, озвученный в 1900 г. В большинстве своем они уже решены, и может показаться, что смелый призыв ученого «Мы должны знать, и мы будем знать» оправдался. Однако Гильберт сказал также: «В математике ни о чем нельзя утверждать, что мы никогда этого не узнаем». Курт Гедель расправился с этой идеей, доказав свою теорему о неполноте: некоторые математические задачи могут не иметь решения в рамках обычной логической математики. Их решение не просто невозможно, как извлечение квадратуры круга — они могут быть неразрешимы в том смысле, что для них не существует ни доказательства, ни опровержения. Вероятно, именно такая судьба ждет некоторые из сегодняшних великих задач математики. Но я был бы удивлен, если бы в их число вошла гипотеза Римана, и поражен, если бы кто-то смог доказать ее неразрешимость. С другой стороны, проблема P/NP-алгоритмов вполне может оказаться неразрешимой или подпадать под какое-то другое формальное ограничение вида «это не может быть сделано, потому что…». Есть в этой задаче что-то, знаете ли, эдакое …
Читать дальше
Конец ознакомительного отрывка
Купить книгу