Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Прошу прощения, вы сказали «bofab»?

Плоскость Фано подсказывает нам, как без всякого риска играть в трансильванскую лотерею из семи чисел, но как насчет лотереи штата Массачусетс? Существует множество конечных геометрий с количеством точек, б о льшим семи, но ни одна из них, к сожалению, не отвечает полностью требованиям лотереи Cash WinFall. В этом случае необходимо нечто более универсальное. Решение проблемы проистекает не непосредственно из живописи эпохи Возрождения или евклидовой геометрии, а из еще одного неожиданного источника – теории цифровой обработки сигналов.

Предположим, мне нужно отправить на спутник важное сообщение, например, «Включить правый двигатель». Спутники не разговаривают на человеческом языке, поэтому на самом деле я отправляю последовательность единиц и нулей – то, что программисты называют битами :

1110101…

Сообщение кажется четким и недвусмысленным. Однако в реальной жизни в каналах связи бывают помехи. Может быть, космический луч попадает в спутник в тот момент, когда спутник принимает ваше сообщение, и искажает один бит информации, поэтому в итоге получается такое сообщение:

1010101…

На первый взгляд может показаться, что это сообщение не очень отличается от предыдущего, но, если изменение одного бита информации приведет к замене команды «включить правый двигатель» на команду «включить левый двигатель», у спутника могут возникнуть серьезные проблемы.

Спутники ст о ят очень дорого, а значит, лучше избегать подобных проблемных ситуаций. Когда вы пытаетесь поговорить с приятелем на бурной вечеринке, то имеете возможность повторить сказанное, и ваши слова не утонут в общем шуме. Данный способ применим и в нашем случае: в исходном сообщении можно продублировать каждый бит, отправив 00 вместо 0 и 11 вместо 1:

11 11 11 00 11 00 11…

Теперь, когда космический луч выбьет второй бит сообщения, спутник увидит такую последовательность:

10 11 11 00 11 00 11…

Спутник знает , что каждый сегмент из двух бит должен представлять собой либо 00, либо 11, а значит, сигнал «10» – признак того, что что-то не в порядке. Но что именно? Спутнику трудно разобраться с этим, поскольку он не знает, в каком именно месте помеха исказила сигнал, не существует способа определить, как выглядело исходное сообщение – 00 или 11.

Но и эту проблему можно исправить, повторив каждый бит три раза вместо двух:

111 111 111 000 111 000 111…

Предположим, сообщение приходит в искаженном виде:

101 111 111 000 111 000 111…

Теперь спутник готов к этому. Он знает, что первый сегмент из трех бит должен представлять собой 000 или 111, а значит, присутствие 101 означает, что что-то пошло не так. Но, если в исходном сообщении была бы последовательность 000, это означало бы, что искажены два бита, расположенные в непосредственной близости друг от друга, – маловероятное событие, учитывая редкость космических лучей, искажающих сообщения. Следовательно, у спутника есть все основания применить принцип большинства: если два из трех бит содержат 1, велика вероятность, что в исходном сообщении была последовательность 111.

Вы только что увидели пример кода с исправлением ошибок – протокол обмена данными, позволяющий получателю устранять ошибки в искаженном сигнале [221]. Эта идея, как практически и все остальное в теории информации, сформулирована в вышедшей в 1948 году и ставшей сразу классической работе Клода Шеннона Mathematical Theory of Communication («Математическая теория связи») [222].

Математическая теория коммуникации! Звучит несколько претенциозно, не так ли? Разве коммуникация – не сугубо человеческий вид деятельности, который нельзя свести к холодным цифрам и формулам?

Я хочу, чтобы вы понимали: я от всей души поддерживаю и настоятельно рекомендую демонстрировать жесткий скептицизм по отношению к любым заявлениям, что ту или иную сущность можно объяснить, или укротить, или полностью понять математическими средствами.

Тем не менее история математики представляет собой историю агрессивной территориальной экспансии, поскольку математические методы становятся все более всеобъемлющими и богатыми, а математики находят способы изучать вопросы, которые раньше считались находящимися вне их области знаний. В наше время словосочетание «математическая теория вероятностей» выглядит вполне обычным, но когда-то могло показаться большим перегибом: математика занималась только изучением определенного и истинного, а не случайного и возможного! Ситуация изменилась, когда Паскаль, Бернулли и другие математики открыли математические законы, описывающие действие случая [223]. Математическая теория бесконечности? До работы Георга Кантора в XIX столетии изучение бесконечности было не столько наукой, сколько теологией; сейчас мы понимаем теорию Кантора о множественности бесконечностей, каждая из которых бесконечно больше предыдущей, настолько п о лно, что преподаем эту тему первокурсникам, изучающим математику. (По правде сказать, она действительно поражает их воображение.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x