Виталий Сигорский - Математический аппарат инженера

Здесь есть возможность читать онлайн «Виталий Сигорский - Математический аппарат инженера» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1977, Издательство: Технiка, Жанр: Математика, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математический аппарат инженера: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математический аппарат инженера»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.

Математический аппарат инженера — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математический аппарат инженера», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В результате взаимодействия математики и техники возникают и успешно развиваются новые прикладные науки. Так, на стыке теории вероятностей с техникой связи и передачи сообщений возникла теория информации, методы которой используются не только в технике, но и в экономике, лингвистике, биологии. Под влиянием и при непосредственном участии математики развиваются такие общие науки как кибернетика, теория цепей и систем.

Одним из наиболее эффективных результатов взаимодействия математики и техники явилось создание современных вычислительных машин. Симбиоз математических методов и технических средств электроники, магнитной техники, прикладной оптики и механики уже весьма высоко зарекомендовал себя в этом отношении и открывает необозримые перспективы в будущем. Развитие вычислительной техники позволяет привести в действие более мощные ресурсы математики и усиливает ее роль как непосредственной производительной силы общества, способствуя тем самым прогрессу самой математики.

2. Современная математика. Наиболее характерной чертой современной математики является чрезвычайно высокая степень обобщения и абстракции. Традиционное определение математики как науки о пространственных формах и количественных отношениях уже не соответствует современному положению вещей, оно приобретает более глубокое и широкое содержание. Предмет современной математики составляют совокупности объектов самого общего вида и любые возможные отношения между ними.

Так, трехмерное геометрическое пространство обобщается на любое число измерений, и в этом многомерном пространстве изучаются пространственно подобные отношения (длина, расстояние, ортогональность). Алгебраические операции абстрагируются и распространяются на объекты любой природы, которые образуют различные структуры в зависимости от приписываемых им свойств (группа, кольцо, тело, поле). Под переменными понимаются не только обычные величины, но и функции, которые рассматриваются как объекты функциональных пространств. Изучаемые математикой объекты объединяют совокупности величин, для представления которых используются такие понятия как множества, матрицы, графы.

- 7 -

Математика развивается как единая наука с присущими ей методами. Но в зависимости от точки зрения на ее предмет математику подразделяют на содержательную математику, формальную математику, метаматематику и прикладную математику.

Содержательная математика изучает системы абстрактных объектов, наделенных конкретным содержанием и называемых конструктами . Конструкты являются результатом идеализации материальных объектов и вводятся путем определения их свойств, которые постулируются или доказываются на основе принятых ранее определений других объектов. Например, точка рассматривался как то, что не имеет частей, линия — как то, что имеет только длину, параллельность — как такое свойство прямых, что, находясь в одной плоскости и будучи продолжены неограниченно в обе стороны, они нигде не встречаются. Содержательный смысл таких объектов вытекает из их описания.

Формальная математика отвлекается от конкретной природы объектов и сосредотачивает свое внимание на отношениях в чистом виде (например, отношение параллельности не связывается с понятием линии). Первоначально вводится совокупность символов (алфавит), которые различаются только по форме, а также задаются правила построения из этих символов терминов и предложений. Исходные положения формальной теории (аксиомы) принимаются в виде предложений, в которые входят определяемые термины. Из этих предложений на основе установленных правил преобразования выводятся другие предложения (теоремы) данной теории.

Метаматематика изучает формализованные теории как системы терминов и предложений. Объектами исследования метаматематики являются конечные последовательности (строчки) символов с операциями, которые представляют термины и предложения (в том числе аксиомы и теоремы). Метаматематику можно считать содержательной наукой, если системы символов рассматривать как материальные объекты.

Прикладная математика включает математические теории, проблемно-ориентированные на изучение явлений природы и общества. Такая ориентация осуществляется путем истолкования объектов формальных и содержательных теорий в категориях реального мира (эмпирическая интерпретация). Например, связывая понятия точки, линии, параллельности (или соответствующие им символы и термины) с объектами и отношениями физического пространства, приходим к прикладной (эмпирической) теории, которая обслуживает проблематику соответствующей области. Одна и та же математическая теория, получая различные интерпретации, может явиться основой для построения многих прикладных теорий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математический аппарат инженера»

Представляем Вашему вниманию похожие книги на «Математический аппарат инженера» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математический аппарат инженера»

Обсуждение, отзывы о книге «Математический аппарат инженера» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x