Макс Тегмарк - Наша математическая вселенная

Здесь есть возможность читать онлайн «Макс Тегмарк - Наша математическая вселенная» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Corpus, Жанр: Математика, Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наша математическая вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наша математическая вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.

Наша математическая вселенная — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наша математическая вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернёмся к детскому вопросу о конечности пространства. Мы видим, что теория Эйнштейна позволяет пространству быть конечным далеко не таким глупым способом, как на рис. 2.6: оно может быть конечным за счёт искривлённости. Например, если наше трёхмерное пространство искривлено подобно поверхности четырёхмерной гиперсферы, то, будь у нас возможность достаточно далеко уйти по прямой линии, мы в конце концов вернулись бы домой с противоположной стороны. Мы не упали бы с края трёхмерного пространства, поскольку у него нет края, как нет края и у сферы, по которой ползёт муравей ( рис. 2.7 ).

В действительности, Эйнштейн позволяет нашему трёхмерному пространству быть конечным, даже если оно не искривлено. Цилиндр на рис. 2.7 в математическом смысле плоский: если нарисовать треугольник на бумажном цилиндре, сумма его углов составит 180°. Чтобы убедиться в этом, вырежьте из цилиндра треугольник: он ровно ляжет на стол. Со сферой или гиперболоидом это не получится сделать без складок или разрывов бумаги. Но хотя цилиндр на рис. 2.7 кажется плоским для муравья, ползущего по небольшому участку, цилиндр замкнут на себя: муравей может вернуться домой, обойдя его вокруг по прямой линии. Математики называют подобные характеристики связности пространства его топологией . Они дали определение плоскому пространству, замкнутому на себя по всем измерениям, и назвали такое пространство тором . Двумерный тор имеет такую же топологию поверхности, как у баранки. Эйнштейн допускает, что физическое пространство, в котором мы живём, представляет собой трёхмерный тор и является в таком случае плоским и конечным. Или бесконечным.

Обе эти возможности прекрасно согласуются с лучшей имеющейся у нас теорией о пространстве — общей теорией относительности Эйнштейна. Но какое оно? В гл. 4 и 5 мы найдём свидетельство того, что пространство всё-таки бесконечно. Но поиск ответа на детский вопрос приводит нас к другой проблеме: чем в действительности является пространство? Хотя все мы сначала думаем о пространстве как о чём-то физическом, образующем ткань нашего материального мира, теперь мы видим, что математики говорят о пространствах как о математических сущностях. Для них изучение пространства — то же самое, что изучение геометрии, а геометрия — просто часть математики. Вполне можно считать, что пространство — это математический объект в том смысле, что все внутренне присущие ему свойства — такие как размерность, кривизна и топология — математические. Мы рассмотрим этот аргумент в гл. 10.

В этой главе мы, изучив своё положение в пространстве, обнаружили, что Вселенная гораздо больше, чем казалось нашим предкам. Чтобы по-настоящему понять, что происходит на огромных расстояниях, можно вести наблюдения с помощью телескопов. Однако определить своё место в пространстве недостаточно. Нам необходимо знать и своё место во времени.

Резюме

• Раз за разом люди убеждались, что физическая реальность гораздо больше, чем мы представляли, что известный нам мир входит в состав куда более грандиозных структур: нашей планеты, Солнечной системы, Галактики, сверхскопления галактик и т. д.

• Общая теория относительности (ОТО) Эйнштейна допускает, что пространство может тянуться бесконечно.

• ОТО допускает альтернативные варианты: пространство конечно, но не имеет границы, так что если вы будете двигаться достаточно долго и быстро, то сможете вернуться с противоположной стороны.

• Ткань нашего физического мира, пространство само по себе может быть чисто математическим объектом в том смысле, что все имманентно присущие ему свойства (размерность, кривизна и топология) — математические.

Глава 3. Наше место во времени

Подлинное знание — это знание пределов своего неведения.

Конфуций

Высшая форма невежества — отвергать что-то, о чём вы ничего не знаете.

Уэйн Дайер

Откуда взялась Солнечная система? Однажды в школе, во втором классе, мой сын Филипп вступил в полемику по этому вопросу. Разговор был примерно таким:

— Я думаю, Солнечную систему создал Бог, — сказала одноклассница.

— Мой папа говорит, что она возникла из гигантского молекулярного облака, — перебил Филипп.

— А откуда взялось гигантское молекулярное облако? — спросил другой мальчик.

— Может быть, Бог создал гигантское молекулярное облако, а после гигантское молекулярное облако породило Солнечную систему, — сказала девочка.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наша математическая вселенная»

Представляем Вашему вниманию похожие книги на «Наша математическая вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наша математическая вселенная»

Обсуждение, отзывы о книге «Наша математическая вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x