Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Здесь есть возможность читать онлайн «Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

22

И английское слово integrate («объединять»), и термин «интегральный» восходят к латинскому слову integеr («целое»). Прим. пер .

23

Когда альпинисту Джорджу Мэллори задали вопрос, зачем он хочет подняться на Эверест, он ответил: «Потому что он существует». Прим. пер .

24

Исаак Ньютон родился 25 декабря 1642 года по юлианскому календарю (4 января 1643 года – по григорианскому). Прим. пер .

25

Ball, A Century Ago Einstein Sparked, и Pais, Subtle Is the Lord. Оригинальная статья: Einstein, Zur Quantentheorie der Strahlung.

26

Усиление света посредством вынужденного излучения. Прим. пер .

27

Burton, History of Mathematics, и Katz, History of Mathematics, дают полномасштабное (хотя и без подробностей) введение в историю математики от античных времен до XX столетия. На более серьезном математическом уровне тема представлена в Stillwell, Mathematics and Its History. В качестве масштабного гуманистического подхода подойдет книга Kline, Mathematics in Western Culture.

28

Смотрите раздел 4.5 в книге Burton, History of Mathematics; главы 2 и 3 в книге: Katz, History of Mathematics; главу 4 в книге Stillwell, Mathematics and Its History.

29

Katz, History of Mathematics, раздел 1.5, представляет различные подходы к измерению площади круга, сделанные в различных мировых культурах. Первое доказательство было представлено Архимедом; смотрите Dunham, Journey Through Genius, глава 4, и Heath, The Works of Archimedes, 91–93.

30

Henry Mendell, Aristotle and Mathematics, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/spr2017/entries/aristotle-mathematics/.

31

Katz, History of Mathematics, 56, и Stillwell, Mathematics and Its History, 54, обсуждают аристотелевскую разницу между актуальной бесконечностью и потенциальной бесконечностью.

32

Опираясь на новые свидетельства, Martínez, Burned Alive, утверждает, что Бруно был сожжен за свою космологию, а не за теологию. Смотрите также A. A. Martínez, Was Giordano Bruno Burned at the Stake for Believing in Exoplanets? Scientific American (2018), https://blogs.scientificamerican.com/observations/was-giordano-bruno-burned-at-the-stake-for-believing-in-exoplanets/. Также смотрите D. Knox, Giordano Bruno, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/bruno/.

33

Эссе Рассела о Зеноне и бесконечности Mathematics and the Metaphysicians, воспроизведено в книге Newman, The World of Mathematics, vol. 3, 1576–90.

34

Всего в античных трудах упоминается 40 апорий Зенона, но до наших дней дошло 9. Прим. пер .

35

Mazur, Zeno’s Paradox. Смотрите также Burton, History of Mathematics, 101–2; Katz, History of Mathematics, раздел 2.3.3; Stillwell, Mathematics and Its History, 54; John Palmer, Zeno of Elea, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/spr2017/entries/zeno-elea/; и Nick Huggett, Zeno’s Paradoxes, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/paradox-zeno/.

36

От лат. discretus «отделенный, раздельный». Прим. пер .

37

Скет – вид вокализа, когда голос используется для имитации музыкального инструмента. Прим. пер .

38

Greene, The Elegant Universe, главы 4 и 5.

39

Stewart, In Pursuit of the Unknown, глава 14.

40

ħ – постоянная Дирака (постоянная Планка – Дирака, приведенная постоянная Планка [видимо, поэтому ее часто называют не «с чертой», а «с планкой»]). Связана с постоянной Планка (основной константой квантовой теории) соотношением ħ = ℎ/2 π Используется вместо постоянной Планка, чтобы в формулах пропадало часто встречающееся число 2 π Прим. пер .

41

Greene, The Elegant Universe, 127–31, объясняет, почему физики полагают, что на ультрамикроскопическом уровне планковской длины пространство распадается в квантовую пену. Философскую точку зрения смотрите в: S. Weinstein and D. Rickles, Quantum Gravity, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/quantum-gravity/.

42

Разумеется, если отвлечься от расстояний, то нам могут понадобиться и б о льшие числа. Скажем, если мы пожелаем сравнить планковский объем (то есть объем крохотного кубика со стороной в планковскую длину) и объем Вселенной. Поскольку объем пропорционален третьей степени длины, то вместо числа 60 получится примерно число 180. По другим оценкам, диаметр Вселенной составляет 1,4∙10 62планковских длин, а объем – 4,5∙10 185 планковских объемов. Прим. пер .

43

Очерки о его жизни смотрите в Netz and Noel, The Archimedes Codex, и C. Rorres, Archimedes, https://www.math.nyu.edu/~crorres/Archimedes/contents.html. Научную биографию смотрите в работе M. Clagett, Archimedes, в книге Gillispie, Complete Dictionary, vol. 1, с дополнениями, сделанными Ф. Ачерби (F. Acerbi) в томе 19. Математика Архимеда имеется в выдающихся книгах Stein, Archimedes, и Edwards, The Historical Development, глава 2, также смотрите Katz, History of Mathematics, разделы 3.1–3.3, и Burton, History of Mathematics, раздел 4.5. Собрание работ Архимеда представлено в книге Heath, The Works of Archimedes.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Представляем Вашему вниманию похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Обсуждение, отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x