К сожалению, сделав это, мы получим только небольшую часть информации. Мы узнаем общее ослабление рентгеновских лучей только вдоль одного конкретного пути луча. Это мало что говорит нам о срезе мозга в целом. Это мало что говорит даже о том конкретном пути, по которому шел рентгеновский луч. Это просто суммарное ослабление по всей линии, а не закон, по которому происходит ослабевание в каждой ее точке.
Позвольте мне предложить такую аналогию: подумайте, сколькими способами можно сложить целые числа, чтобы получить 6. Так же как число 6 может оказаться результатом сложения 5 + 1, или 2 + 4, или 3 + 3, так и итоговое ослабление рентгеновских лучей может оказаться результатом самых различных последовательностей локальных ослаблений. Например, было сильное затухание в начале пути и слабое – в конце. А может, и наоборот. Или, возможно, затухание было постоянным по всей протяженности. Мы не можем выбрать истинный вариант, имея всего одно измерение.
Но как только мы осознаем эту трудность, тут же понимаем, как с ней справиться. Нужно испускать лучи по множеству разных направлений. В этом суть компьютерной томографии. Пропуская рентгеновские лучи через одну точку в разных направлениях и повторяя этот процесс для различных точек, мы в принципе можем определить коэффициенты ослабления интенсивности в любой точке мозга. Это не совсем то же самое, что смотреть на мозг, но почти настолько же эффективно, поскольку предоставляет информацию о том, какие типы ткани расположены в тех или иных областях мозга.
Таким образом, математическая задача – собрать информацию от всех измерений по всем прямым в единую связную двумерную картину на определенном срезе мозга. Именно здесь на помощь пришел анализ Фурье. Он позволил южноафриканскому физику Аллану Кормаку решить проблему такой обратной сборки [304]. Кормак обратился к анализу Фурье, поскольку за этой задачей скрывается окружность – окружность всех направлений, по которым рентгеновские лучи можно запускать в двумерный срез.
Вспомните, что окружности всегда связаны с синусоидами, а синусоиды – строительные блоки для рядов Фурье. Записав задачу обратной сборки в терминах рядов Фурье, Кормак смог свести двумерную задачу обратной сборки к более простой одномерной задаче. По сути, он избавился от 360° возможных углов. Затем, проявив недюжинное математическое мастерство, он сумел решить одномерную задачу обратной сборки. В итоге по измерениям, сделанным по всем возможным направлениям, он смог определять свойства тканей внутри. Он построил карту поглощений, а это почти то же, что и увидеть сам мозг.
В 1979 году Кормак разделил с Годфри Хаунсфилдом Нобелевскую премию по физиологии и медицине за разработку компьютерной томографии. Ни тот ни другой не были врачами. Кормак разрабатывал математическую теорию томографии на основе анализа Фурье с конца 1950-х годов. Хаунсфилд, британский инженер-электрик, в сотрудничестве с рентгенологами изобрел сканер в начале 1970-х.
Изобретение сканера-томографа – еще одно подтверждение необъяснимой эффективности математики. В этом случае идеи, которые позволили воплотить в жизнь КТ-сканирование, существовали уже более полувека и не имели никакого отношения к медицине.
Следующая часть истории началась в конце 1960-х. Хаунсфилд уже испытал прототип своего изобретения на мозге свиней и отчаянно пытался найти врача-рентгенолога, который помог бы ему работать с людьми, но доктора отказывались с ним встречаться. Все считали его ненормальным, зная, что рентгеновские лучи не показывают мягкие ткани. Например, обычный рентгеновский снимок головы показывал череп, но при этом мозг выглядел как невыразительное облако: опухоли, кровоизлияния и тромбы были не видны. Однако Хаунсфилд утверждал обратное.
Наконец один рентгенолог согласился его выслушать. Разговор не удался. В конце беседы скептически настроенный врач вручил Хаунсфилду банку с человеческим мозгом, пораженным опухолью, и предложил найти эту опухоль с помощью сканера. Как же он был ошеломлен, когда Хаунсфилд вскоре предоставил ему изображения мозга, где отображались не только опухоль, но и места кровотечения.
Слухи о томографе распространились, что привлекло к исследованиям других специалистов. Когда в 1972 году Хаунсфилд опубликовал свои результаты, они потрясли медицинский мир. Рентгенологи внезапно смогли применять рентгеновские лучи, чтобы видеть опухоли, кисты, серое вещество, белое вещество и заполненные жидкостями полости в мозге.
Читать дальше
Конец ознакомительного отрывка
Купить книгу