Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это правило на самом деле кажется весьма естественным, и однако его приходится часто нарушать. Мы слышим раскат грома только спустя несколько секунд после электрического разряжения облака. Из двух громовых ударов – одного отдаленного, другого близкого – не может ли первый предшествовать второму, хотя раскат второго мы услышали прежде раската первого?

XI

Новая трудность: имеем ли мы достаточное право говорить о причине явления? Если все части Вселенной в известной степени взаимосвязаны, то любое явление будет не следствием единственной причины, а результатом бесконечного множества причин; оно как часто говорят, есть следствие состояния Вселенной в предшествующий момент.

Как выразить правила, применяемые к столь сложным обстоятельствам? И однако только ценой учета этих обстоятельств правила могут стать общими и строгими.

Чтобы нам не растеряться в этой бесконечной сложности, сделаем более простое предположение; рассмотрим три светила, например Солнце, Юпитер и Сатурн, а для большей простоты будем считать их сжатыми в материальные точки и изолированными от остального мира.

Достаточно знать положения и скорости трех тел в данный момент, чтобы определить положения и скорости их в следующий момент, а следовательно, и в какой угодно момент. Положения их в момент t определяют их положения в момент t + h , а также их положения в момент t − h .

Даже более того; положение Юпитера в момент t , взятое вместе с положением Сатурна в момент t + а , определяет положение Юпитера и Сатурна в какой угодно момент. Совокупность положений, которые занимают Юпитер в момент t + ε и Сатурн в момент t + а + ε, связана с совокупностью положений, которые занимают Юпитер в момент t и Сатурн в момент t + а , законами, столь же точными, как закон Ньютона, хотя и более сложными.

Но тогда почему же считать одну из этих совокупностей причиною другой, что привело бы к заключению об одновременности момента t Юпитера и момента t + а Сатурна?

Здесь могут иметь место только соображения удобства и простоты, которые и в самом деле очень важны.

XII

Но перейдем к примерам менее искусственным; чтобы дать отчет в определении, которое неявно допускается учеными, посмотрим на их работу и поищем, на основании каких правил они определяют одновременность.

Я возьму два простых примера: измерение скорости света и определение долгот.

Когда астроном говорит мне, что такое-то звездное явление, видимое в его телескопе в настоящий момент, произошло, однако, пятьдесят лет тому назад, я пытаюсь понять, что он хочет сказать, и прежде всего спрашиваю у него, откуда он это знает, т. е. как он измерил скорость света.

Он начал с того, что принял скорость света постоянной и, в частности, одинаковой во всех направлениях. Это и есть постулат, без которого не могло бы быть произведено никакое измерение этой скорости. Этот постулат никогда нельзя будет проверить непосредственно на опыте; последний мог бы его опровергнуть, если бы результаты различных измерений не согласовывались между собой. Мы должны считать себя счастливыми тем, что этого противоречия нет и что те небольшие расхождения, которые могут возникнуть, легко объяснимы.

Во всяком случае, этот постулат, согласующийся с законом достаточного основания, был принят всеми; для меня важно то, что он дает нам новое правило для отыскания одновременности, совершенно отличное от того, которое мы изложили выше.

Допустив этот постулат, посмотрим, как была измерена скорость света. Известно, что Рёмер пользовался затмениями спутников Юпитера и отыскивал, насколько событие опаздывало сравнительно с предсказанием.

Но как получалось это предсказание? При помощи астрономических законов, например закона Ньютона.

Нельзя ли было бы так же хорошо объяснить наблюдаемые факты, если бы приписать скорости света величину, несколько отличную от принятой, и допустить, что закон Ньютона является лишь приближенным? Пришлось бы только заменить закон Ньютона другим, более сложным.

Таким образом, для скорости света принимается такая величина, чтобы астрономические законы, совместимые с этой величиной, были по возможности наиболее простыми.

Когда моряки или географы определяют долготу, им приходится решать как раз ту проблему, которая занимает нас; они должны, не находясь в Париже, вычислять парижское время.

Как они делают это?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x