Далее, чему же учит нас принцип наименьшего действия? Он учит нас тому, что для перехода из начального состояния, соответствующего моменту t 0, в конечное состояние, соответствующее моменту t 0, система должна двигаться таким путем, чтобы за промежуток времени между моментами t 0и t 1средняя величина «действия» (т. е. разности двух энергий Т и U ) была минимальной. Впрочем, первый из двух принципов является следствием второго.
Если обе функции Т и U известны, этот принцип оказывается достаточным для определения уравнений движения. В самом деле, между всеми путями, позволяющими совершить переход от одного состояния к другому, есть, очевидно, один, для которого средняя величина действия меньше, чем для всех других. Далее, существует только один такой путь, и отсюда следует, что принцип наименьшего действия достаточен для определения действительного пути, а следовательно, для определения уравнений движения. Таким приемом мы приходим к так называемым уравнениям Лагранжа. В этих уравнениях роль независимых переменных играют координаты гипотетических частиц m ; но я теперь предполагаю, что в качестве переменных приняты доступные прямому опыту параметры q .
Обе части энергии должны тогда выражаться в функции параметров q и их производных; ясно, что именно в таком виде они представляются экспериментатору: он, естественно, будет стремиться определить потенциальную и кинетическую энергию с помощью величин, которые он может непосредственно наблюдать [17] Добавим, что U будет зависеть только от q; Т будет зависеть от q и от их производных по времени и представится однородным многочленом второй степени относительно этих производных.
.
Таким образом, система всегда будет переходить из одного состояния в другое таким путем, что средняя величина действия окажется наименьшей. При этом несущественно, что Т и U теперь выражены через параметры q и их производные, несущественно, что с помощью этих же параметров мы определяем начальное и конечное состояние; принцип наименьшего действия остается справедливым во всяком случае. И здесь из всех путей, могущих служить переходом от начального состояния к конечному, найдется один и только один, для которого средняя величина действия будет наименьшая. Таким образом, принцип наименьшего действия достаточен для нахождения дифференциальных уравнений, определяющих изменения параметров q . Получаемые этим приемом уравнения представляют собой другую форму уравнений Лагранжа.
Для того чтобы составить эти уравнения, нам нет надобности знать ни соотношений, которые связывают параметры q с координатами гипотетических частиц, ни масс этих частиц, ни выражения U в функции координат этих частиц. Все, что нам нужно знать, это выражение U в функции q и выражение T в функции q и их производных, т. е. выражения кинетической и потенциальной энергий в функциях экспериментальных данных.
Затем будет иметь место одно из двух: либо для надлежащим образом выбранных функций Т и U уравнения Лагранжа, составленные в соответствии е только что сказанным, окажутся тождественными с дифференциальными уравнениями, выведенными из опыта; либо же вовсе не будет таких функций Т и U , для которых такое согласие имело бы место. Ясно, что во втором случае никакое механическое истолкование невозможно.
Итак, необходимое условие возможности механического истолкования состоит в том, чтобы можно было выбрать функции Т и U , которые удовлетворяли бы принципу наименьшего действия и вытекающему из него принципу сохранения энергии.
Впрочем, это условие и достаточно; в самом деле, пусть удалось найти функцию V параметров q , представляющую одну из частей энергии; пусть другая часть энергии, обозначенная нами через Т , является функцией q и их производных и имеет вид однородного многочлена второй степени относительно этих производных; и, наконец, пусть лагранжевы уравнения, образованные с помощью этих двух функций Т и U , согласуются с данными опыта.
Что же нужно для получения отсюда механического истолкования? Для этого нужно лишь, чтобы U можно было рассматривать как потенциальную энергию системы, а Т – как живую силу той же системы.
В отношении U здесь нет никаких трудностей; но можно ли Т рассматривать как живую силу материальной системы? Легко показать, что это всегда возможно, и притом бесчисленным множеством способов. За подробностями я отсылаю читателя к предисловию моего сочинения «Электричество и оптика».
Читать дальше
Конец ознакомительного отрывка
Купить книгу