Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Далее стремятся расчленить явление по отношению к пространству. Опыт дает нам запутанную совокупность фактов, происходящих в пространстве некоторого объема. Надо постараться распознать в ней элементарное явление, которое, напротив, было бы локализовано в пределах весьма малой части пространства.

Несколько примеров, быть может, помогут лучше понять мою мысль. Никогда не достиг бы цели тот, кто захотел бы прямо изучить сложное распределение температур в охлаждающемся теле. Но все упрощается, если принять во внимание, что ни одна точка тела не может непосредственно передавать теплоту удаленной точке; теплота будет передаваться лишь точкам, лежащим в непосредственном соседстве; лишь постепенно тепловой поток достигнет других точек тела. Здесь элементарным явлением служит обмен теплоты между двумя смежными точками; этот процесс заключен в тесные пространственные пределы и является относительно простым, если ввести естественное допущение, что на него не влияет температура частиц, лежащих на заметном расстоянии.

Другой пример. Я сгибаю стержень; он принимает весьма сложную форму, прямое изучение которой было бы невозможно; я смогу приступить к ее исследованию, если замечу, что сгибание стержня является результатом деформации весьма малых элементов стержня и что деформация каждого из них зависит исключительно от сил, непосредственно к нему приложенных, а не от сил, действующих на другие элементы.

В этих примерах, которые можно было бы множить без труда, заключено допущение, что не существует действия на расстоянии (по крайней мере на значительном расстоянии). Это – гипотеза; она не всегда является верной – примером служит закон тяготения; поэтому ее надлежит подвергнуть проверке; если она подтверждается хотя бы приближенно, то она ценна, потому что она позволит нам обосновать математическую физику по крайней мере путем последовательных приближений.

Если такая гипотеза не выдерживает проверки, следует искать что-либо аналогичное, ибо есть и другие средства дойти до элементарных явлений. Если несколько тел действуют вместе, то возможно, что их действия независимы и просто складываются друг с другом либо как векторы, либо как скалярные величины. В таком случае элементарным явлением будет действие отдельного тела. В иных случаях задачу сводят к малым движениям, или – более общо – к малым вариациям, которые подчинены известному закону суперпозиции. Наблюденное движение разложится тогда на простые движения, например звук – на гармонические тоны, белый свет – на монохроматические составляющие.

Какими же средствами можно уловить элементарное явление, после того как выяснилось, с какой стороны следует его искать?

Прежде всего, часто случается, что, для того чтобы его угадать или – лучше – чтобы угадать то, что есть в нем полезного для нас, вовсе нет необходимости проникать в самый механизм его; достаточно будет применить закон больших чисел. Обратимся опять к примеру распространения теплоты: каждая частица излучает по направлению к каждой соседней частице, но по какому закону – этого нам нет необходимости знать; всякое предположение относительно этого было бы гипотезой безразличной, а следовательно, бесполезной и не поддающейся проверке. В самом деле, благодаря свойствам средних величин и вследствие симметричности среды все различия сглаживаются и результат оказывается всегда одним и тем же, какая бы гипотеза ни была предложена.

Подобное имеет место в теории упругости и в теории капиллярных явлений: близкие друг к другу молекулы притягиваются и отталкиваются, но нам нет нужды знать, по какому закону. Достаточно того, что это притяжение действует только на малых расстояниях, что число частиц весьма велико, что среда симметрична, а далее остается лишь пустить в ход закон больших чисел.

В приведенных примерах простота элементарного явления таилась под сложностью непосредственно наблюдаемого результата; но эта простота в свою очередь является призрачной и скрывает за собою весьма сложный механизм.

Лучшим средством дойти до элементарного явления был бы, очевидно, опыт. С помощью искусных экспериментальных приемов нужно было бы разъединить ту сложную связанность, какую природа предоставляет нашему исследованию, а затем тщательно изучать найденные и доведенные до возможной степени чистоты составные элементы. Примером может служить разложение естественного белого луча призмой на монохроматические лучи и поляризатором – на поляризованные лучи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x