Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А сам закон Ньютона? Простота его, так долго остававшаяся скрытой, быть может, просто кажущаяся. Кто знает, не лежит ли в основании управляемых им явлений некоторый сложный механизм (может быть, соударения тонкой материи, возбужденной беспорядочными движениями), и не есть ли простота этого закона лишь следствие игры средних величин и больших чисел? Во всяком случае, трудно удержаться от мысли, что истинный закон содержит добавочные члены, которые делаются значительными на малых расстояниях. Если в астрономии ими можно пренебрегать сравнительно с основным членом, так что здесь закон Ньютона является во всей своей простоте, то это имеет место лишь вследствие огромности небесных расстояний.

Нет сомнения, что если бы наши методы исследования становились все более и более проникающими, то мы открывали бы простое под сложным, потом сложное под простым, потом опять простое под сложным и т. д., причем невозможно было бы предвидеть, каково будет последнее звено. Где-нибудь да необходимо остановиться; и чтобы наука была возможна, надо остановиться, когда мы пришли к простоте, Простота – единственная почва, на которой мы можем воздвигнуть здание наших обобщений. Но если эта простота только кажущаяся, то будет ли такая почва достаточно надежной? Это – вопрос, заслуживающий исследования. Итак, рассмотрим, какую роль играет в наших обобщениях уверенность в простоте. Пусть мы установили, что некоторый простой закон подтверждается для достаточно большого числа отдельных случаев; тогда мы отказываемся допустить, что такое удачное совпадение было простой случайностью, и заключаем отсюда, что закон этот должен быть верен вообще.

Кеплер заметил, что все наблюденные Тихо Браге положения одной из планет лежат на одном и том же эллипсе. Ему ни на мгновение не приходит мысль, что благодаря странной игре случая Тихо смотрел на небо как раз в те моменты, когда истинная траектория планеты пересекала этот эллипс.

В таком случае не все ли равно, реальна ли простота или за ней скрывается сложная истина. Пусть простота будет следствием влияния больших чисел, которое сглаживает индивидуальные различия, или пусть она зависит от малости некоторых величин, позволяющей пренебрегать некоторыми членами, – как бы то ни было, она не случайна. Реальна ли эта простота или призрачна – она всегда имеет причину. Мы можем рассуждать таким образом всегда, и если простой закон был подтвержден большим числом отдельных наблюдений, то у нас есть законное право предположить, что он и впрямь будет верен в аналогичных случаях. Отказаться от этого – значило бы для нас приписать случайности недопустимую роль.

Однако имеется одно отличие. Простота реальная, глубоко коренящаяся, устояла бы перед увеличением точности наших измерительных средств. Если бы мы считали природу простою в основе, мы должны были бы сделать заключение от простоты приближенной к простоте строгой. Так прежде и поступали; но мы больше не имеем на это права.

Так, например, простота законов Кеплера – только кажущаяся. Это обстоятельство не мешает нам со значительным приближением прилагать эти законы ко всем системам, подобным Солнечной системе, но оно препятствует им быть строго точными.

Роль гипотезы. Всякое обобщение есть гипотеза. Поэтому гипотезе принадлежит необходимая, никем никогда не оспаривавшаяся роль. Она должна лишь как можно скорее подвергнуться и как можно чаще подвергаться проверке.

Если она этого испытания не выдерживает, то, само собой разумеется, ее следует отбросить без всяких сожалений. Так вообще и делают; но иногда не без некоторой досады. Но это чувство ничем не оправдано; напротив, физик, который пришел к отказу от одной из своих гипотез; должен был бы радоваться, потому что тем самым он нашел неожиданную возможность открытия. Я предполагаю, что его гипотеза не была выдвинута необдуманно, что она принимала в расчет все известные факторы, могущие помочь раскрыть явление! Если она не оправдывается, то это свидетельствует о чем-то неожиданном, необыкновенном; это значит, что предстоит найти нечто неизвестное, новое.

И была ли опровергнутая таким образом гипотеза бесплодной? Нисколько! Она, можно сказать, принесла больше пользы, чем иная верная гипотеза: не только потому, что она вызвала решающий опыт, но и потому, что, не будь ее, этот опыт был бы произведен наудачу, и в нем не увидели бы ничего чрезвычайного; только в списке фактов прибавился бы один лишний, не влекущий за собой никаких следствий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x