Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, в этом простом случае определение основных понятий является делом легким. Но трудности опять возникают в более сложных случаях, как, например, если силы зависят не только от расстояний, но и от скоростей. Вебер предполагает, что взаимодействие двух электрических частиц зависит не только от их расстояния, но также от их скорости и ускорения. Если бы материальные точки притягивались по тому же закону, U зависело бы от скоростей и могло бы содержать член, пропорциональный квадрату скорости. Но как в этом случае можно было бы среди членов, пропорциональных квадратам скоростей, отличить те, которые относятся к T , и те, которые относятся к U ? Как, следовательно, различить два вида энергии? Даже больше того, как определить самую энергию? Ведь теперь мы не имеем уже никаких оснований предпочесть Т + U какой-либо другой функции Т + U , раз исчезло свойство, отличавшее Т + U и состоявшее в возможности разделения ее на два слагаемых специальной формы.

Однако это не все. Необходимо принять в расчет не только механическую энергию в собственном смысле, но также другие виды энергии: теплоту, химическую энергию, электрическую энергию и другие. Тогда принцип сохранения энергии примет вид

Т + U + Q = const,

где Т означает воспринимаемую кинетическую энергию, U – потенциальную энергию положения, зависящую исключительно от расположения тел, Q – внутреннюю молекулярную энергию в тепловой, химической или электрической форме.

Все шло бы хорошо, если бы эти три члена можно было резко различить: если бы Т было пропорционально квадратам скоростей, U не зависело ни от скоростей, ни от состояния тела, Q зависело не от скоростей и расположения тел, а исключительно от их внутреннего состояния. Тогда выражение энергии допускало бы только единственное разложение на три члена указанной формы. На самом деле это не так; рассмотрим наэлектризованные тела: электростатическая энергия, обусловленная их взаимодействием, будет, очевидно, зависеть от их заряда, т. е. от их состояния, но также и от их расположения. Если эти тела находятся в движении, то они будут действовать друг на друга электродинамически, и электродинамическая энергия будет зависеть не только от их состояния и их расположения, но и от их скоростей. Таким образом, у нас не оказывается никакого средства выделить три подразделения энергии, рассортировав члены так, чтобы каждый относился к T, U и Q в отдельности.

Если Т + U + Q есть постоянная величина, то постоянной будет и любая ее функция

φ(T + U + Q).

Если бы Т + U + Q имело вышеуказанную специальную форму, неопределенности не могло бы возникнуть; между всеми функциями φ( T + U + Q ), сохраняющими постоянную величину, нашлась бы только одна, имеющая этот частный вид, и она была бы тем, что мы условились называть энергией. Но это, по вышесказанному, не выполняется: между функциями, сохраняющими неизменную величину, нет таких, которые бы в точности подходили под нашу специальную форму, – следовательно, как найти между ними ту, которую следует именовать энергией? У нас нет никакой путеводной нити для этих поисков.

Поэтому нам остается выразить принцип сохранения энергии только таким образом: есть нечто, сохраняющее неизменную величину. Но в такой форме он оказывается вне пределов досягаемости опыта и сводится к некоторого рода тавтологии, ибо ясно, что если мир управляется законами, то существуют некоторые величины, которые остаются постоянными. Подобно принципам Ньютона (и по тем же основаниям), принцип сохранения энергии, основанный на опыте, не может быть опровергнут этим последним.

Это исследование показывает, что с переходом от классической системы к системе энергетической осуществляется известный прогресс, но что в то же время этот прогресс недостаточен.

Еще более серьезным кажется мне другое возражение: принцип наименьшего действия приложим к обратимым процессам; но он оказывается совершенно недостаточным, коль скоро речь идет о необратимых процессах. Попытка Гельмгольца распространить его на эту область явлений не имела и не могла иметь успеха: здесь все еще принадлежит будущему.

Самая формулировка принципа наименьшего действия имеет в себе нечто, неприятно поражающее наш ум. При переходе от одной точки к другой материальная частица, не подверженная действию какой-либо силы, но подчиненная условию не сходить с некоторой поверхности, движется по геодезической линии, т. е. по кратчайшему пути. Эта частица как будто бы знает ту точку, куда ее желают привести, предвидит время, которое она затратит, следуя по тому или иному пути, и, наконец, выбирает путь наиболее подходящий. В такой формулировке принципа частица представлена нам как бы одушевленным существом, обладающим свободой воли. Ясно, что следовало бы заменить эту формулировку другой, более подходящей, в которой, выражаясь языком философа, конечные причины не становились бы явным образом на место причин действующих.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x