Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но принцип относительного движения от этого не делается менее интересным; он заслуживает изучения сам по себе. Постараемся прежде всего дать ему точную формулировку.

Выше мы сказали, что ускорения различных тел, входящих в состав изолированной системы, зависят только от их скоростей и положений (относительных, а не абсолютных), если только подвижные оси, к которым отнесено движение, перемещаются прямолинейно и равномерно. Или, если угодно, эти ускорения зависят только от разностей скоростей и разностей координат тел, а не от абсолютных значений этих скоростей и координат.

Если этот принцип верен для относительных ускорений (или, лучше сказать, для разностей ускорений), то, сочетая его с законом противодействия, можно вывести, что он верен также и для абсолютных ускорений.

Остается, таким образом, рассмотреть, как можно доказать, что разности ускорений зависят только от разностей скоростей и координат или, говоря математическим языком, что эти разности координат удовлетворяют дифференциальным уравнениям второго порядка.

Можно ли это доказательство вывести из опытов или же из априорных соображений?

Припоминая сказанное выше, читатель сам даст на это ответ. В самом деле, в такой формулировке принцип относительного движения очень похож на то, что выше я назвал обобщенным принципом инерции. Это не совсем то же самое, потому что здесь речь идет о разностях координат, а не о самих координатах. Следовательно, новый принцип учит нас кое-чему большему сравнительно с прежним. Однако те же рассуждения приложимы и к нему, и они привели бы к тем же заключениям; возвращаться к этому было бы бесполезно.

Аргумент Ньютона. Здесь мы сталкиваемся с вопросом, крайне важным и в какой-то степени внушающим беспокойство. Я сказал, что принцип относительного движения не только был для нас результатом опыта, но и что a priori никакая иная гипотеза не допускается нашим разумом.

Но тогда почему принцип верен только в случае прямолинейного и равномерного движения подвижных осей? Казалось бы, он должен внушаться нам с той же силой и в случае, когда это движение переменно или, по крайней мере, когда оно сводится к равномерному вращению. Однако в этих двух случаях принцип неверен.

Я не стану подробно останавливаться на том случае, когда движение осей прямолинейно, но не равномерно; парадокс устраняется сейчас же при исследовании. Я нахожусь в вагоне, и если поезд, натолкнувшись на какое-нибудь препятствие, внезапно останавливается, я буду отброшен на противоположную скамейку, хотя прямо на меня не действовала никакая сила. Здесь нет ничего загадочного: я не подвергся действию никакой внешней силы, зато поезд испытал внешний толчок. Нет ничего парадоксального в том, что относительное движение двух тел оказывается возмущенным, раз движение того или другого тела изменено внешней причиной.

Остановлюсь подробнее на случае относительных движений, относимых к равномерно вращающимся осям. Если бы небо было беспрестанно покрыто тучами, если бы мы не имели никакого средства наблюдать светила, мы все-таки могли бы заключить, что Земля вращается; мы узнали бы об этом по ее сжатию или – еще лучше – из опыта с маятником Фуко.

Однако имело ли бы смысл говорить в этом случае, что Земля вращается? Если нет абсолютного пространства, то как можно вращаться, не вращаясь по отношению к чему-либо, а с другой стороны, как могли бы мы принять заключение Ньютона и верить в абсолютное пространство?

Но недостаточно констатировать, что все возможные решения одинаково не удовлетворяют нас; надо для каждого из них проанализировать основания, по которым мы отвергаем его, чтобы сделать наш выбор сознательно. Да простятся мне поэтому последующие длинные рассуждения.

Вернемся к нашему воображаемому случаю: густые тучи скрывают звезды от людей, и те не могут наблюдать их и даже не знают об их существовании. Как эти люди узнают, что Земля вращается? Еще увереннее, чем наши предки, они будут считать Землю, которая носит их, неподвижной и непоколебимой; им придется слишком долго ждать появления Коперника. Но, наконец, этот Коперник все-таки явится. Почему же это должно случиться?

Механики воображаемого нами мира сначала не натолкнулись бы ни на какое безусловное противоречие. В теории относительного движения рассматривают, кроме реальных сил, две фиктивные силы, которые называются: одна – обыкновенной, а другая – сложной центробежной силой. Наши воображаемые ученые могли бы, следовательно, все объяснить, рассматривая эти две силы как реальные, и они не увидели бы здесь противоречия с обобщенным принципом инерции, так как эти силы зависели бы: одна, подобно действительно существующему притяжению, от относительных положений различных частей системы; другая, подобно реальному трению, от их относительных скоростей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x