Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Иное дело при вычитании; его можно логически определить как действие, обратное сложению. Но следует ли с этого и начинать? И здесь надобно начать с примеров, выяснить на них взаимность этих двух действий; тогда определение будет и подготовлено и оправдано.

То же самое нужно сказать об умножении. Надо взять частную задачу и показать на ней, что она может быть разрешена, если складывать между собой равные числа. Затем уже можно показать, что к такому же результату можно прийти посредством умножения, т. е. посредством действия, которое учениками уже усвоено, и тогда логическое определение выяснится само собой.

Деление необходимо определить как действие, обратное умножению; но начать нужно с примера, заимствованного из повседневного обихода, например с деления какого-нибудь предмета на равные доли, и на этом примере показать, что делимое получается посредством умножения.

Остаются действия над дробями. Некоторые затруднения здесь представляет только умножение. Лучше изложить сначала теорию пропорций, так как только из нее можно извлечь логическое определение.

Но для того чтобы стали приемлемы те определения, которые встречаются в начале этой теории, необходимо предварительно воспользоваться многими примерами, заимствованными из классических задач на тройное правило, вводя в них дробные величины. Можно без боязни прибегать к геометрическим образам для ознакомления учеников с понятием о пропорции; для этого либо нужно вызвать в их памяти воспоминания, если они уже занимались геометрией, либо обращаться к их непосредственной интуиции, что, между прочим, подготовит их к занятию геометрией. Прибавлю, наконец, что, дав определение умножения дробей, необходимо оправдать это определение, показав, что умножение является действием переместительным, сочетательным и распределительным, а также указать при этом, что такое доказательство приводится для оправдания определения.

Отсюда видно, какую роль играют во всем этом геометрические образы, и эта роль оправдывается философией и историей науки. Если бы арифметика не имела никакой геометрической примеси, она знала бы только целые числа; для приспособления к нуждам геометрии она кроме них изобрела еще и нечто другое.

Геометрия

В геометрии мы встречаемся на первых шагах с понятием о прямой линии. Можно ли определить прямую линию? Обычное определение ее как кратчайшего расстояния от одной точки до другой меня не удовлетворяет. Я исходил бы просто из линейки и показал бы ученику, как можно проверить линейку, повернув ее другой стороной, такая проверка есть истинное определение прямой линии: прямая линия – это ось вращения. Затем надобно ученику показать, что линейку можно проверить посредством скольжения, и при этом обнаружится одно из наиболее важных свойств прямой линии. Что же касается того свойства, что прямая линия есть кратчайшее расстояние между двумя точками, то это уже теорема, которая может быть доказана аподиктически, но это доказательство слишком тонко, чтобы найти себе место в курсе средней школы. Лучше было бы показать, что линейка, предварительно проверенная, налагается на натянутую проволоку. При всех затруднениях такого рода можно без опасений умножать число аксиом, оправдывая их даже на грубых примерах. Некоторое число аксиом необходимо должно быть допущено, и если число их немного превосходит то, которое строго необходимо, то беда еще невелика. Главное – это научить правильно рассуждать при помощи раз допущенных аксиом. Дедушка Сарсей часто говорил, что в театре зритель охотно принимает те постулаты, которые ему навязаны сначала, но раз занавес поднят, он становится неумолимым в своей логической требовательности. То же самое происходит в математике.

Для определения круга можно исходить из циркуля. Ученики с первого взгляда узнают начерченную кривую. Затем им покажут, что расстояние между двумя точками инструмента остается постоянным, что одна из этих точек неподвижна, а другая движется, и таким образом ученики естественно придут к логическому определению. Определение плоскости содержит в себе аксиому, этого не нужно скрывать. Возьмем рисовальную доску и покажем, что движущаяся линейка постоянно накладывается на эту плоскость, сохраняя при этом три степени свободы. Сравним затем плоскость с цилиндром и конусом, с поверхностями, на которые прямая может быть наложена только при сохранении двух степеней свободы. Возьмем далее три рисовальные доски и покажем сначала, что они, будучи наложены одна на другую, могут скользить при трех степенях свободы. И, наконец, чтобы установить различие между плоскостью и сферой, покажем, что две доски, накладывающиеся порознь на третью, накладываются также друг на друга.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x