Именно в изложении основных принципов нужно избегать излишних тонкостей. Здесь они и не привились бы и к тому же были бы бесполезны. Нельзя все доказать и нельзя все определить. Приходится всегда делать заимствование у интуиции. Не важно, сделаем ли мы это заимствование немного раньше или немного позже, будет ли оно немного больше или меньше, лишь бы мы, правильно пользуясь теми посылками, которые даны нам интуицией, научились правильно рассуждать.
11. Можно ли, однако, удовлетворить столь противоположным условиям? Возможно ли это в особенности тогда, когда приходится дать определение? Как найти такую краткую формулировку, которая одновременно удовлетворяла бы непреклонным правилам логики, нашему желанию понять то место, которое занимает новое понятие в совокупности знаний, нашей необходимости мыслить образами? Чаще всего такой формулировки найти нельзя, и вот почему недостаточно высказать определение: необходимо его подготовить и необходимо его оправдать.
Что я хочу этим сказать? Вы знаете, как часто говорят: всякое определение включает в себя аксиому, так как оно утверждает существование определенного объекта. Определение будет, следовательно, оправдано с точки зрения логической лишь тогда, когда будет доказано, что оно не находится в противоречии ни с терминами, ни с ранее допущенными истинами.
Но это не все. Определение теперь называют соглашением; но большинство умов возмутится, если вы захотите навязать это определение как соглашение произвольное. Они успокоятся только тогда, когда вы им дадите ответ на многочисленные вопросы, которые у них возникнут.
Чаще всего математические определения, как это показал Лиар, суть целые построения, составленные при помощи простейших понятий. Но почему эти элементы соединены именно данным образом, когда возможна еще тысяча других способов соединения? Каприз ли это? А если нет, то почему данная комбинация имеет больше прав на существование, чем все прочие? Какой необходимости она отвечает? Как можно было предвидеть, что она сыграет важную роль в развитии науки, что она сократит наши суждения и наши вычисления? Существует ли в природе некоторый особый предмет, который является, так сказать, неясным и грубым прообразом такой комбинации?
Это не все. Если вы ответите на эти вопросы удовлетворительно, то мы увидим, что принятую комбинацию нужно окрестить каким-либо именем. Но выбор имени не является произвольным. Нужно объяснить, какими аналогиями руководились, избирая имя. Если же аналогичное имя присваивалось различным вещам, то нужно показать, что эти вещи отличаются между собой только материально, по форме же близки друг к другу, что их свойства подобны и, так сказать, параллельны.
Вот какой ценой можно удовлетворить всем притязаниям. Если формулировка достаточно правильна, чтобы удовлетворить логика, то ее оправдание удовлетворит интуитивиста. Но лучше поступить иначе: необходимо, чтобы оправдание во всех случаях, когда это возможно, предшествовало формулировке и подготовляло ее; изучение нескольких частных примеров лучше всего приводит к общей формулировке.
Еще другое обстоятельство: каждая часть формулированного определения имеет целью установить отличие определяемого объекта от класса других близких предметов. Определение будет понято лишь тогда, когда вы покажете не только определяемый предмет, но и те соседние предметы, от которых его надобно отличать; когда вы сделаете явственным это отличие и при этом прибавите: «вот для чего я внес в определение то-то и то-то».
Теперь нам нужно перейти от общих суждений к исследованию вопроса, каким образом все изложенные мною несколько абстрактные принципы могут быть приложены в арифметике, геометрии, анализе и механике.
Арифметика
Нет нужды определять целое число; но зато обыкновенно определяют действия над целыми числами. Я предполагаю, что ученики выучивают определения наизусть и не связывают с ними никакого смысла. Для этого у меня есть два основания: во-первых, учеников заставляют заучивать определения слишком рано, когда их ум не чувствует в этом никакой потребности; во-вторых, даваемые им определения неудовлетворительны с логической точки зрения. Для сложения нельзя найти хорошее определение просто потому, что нельзя же все определить и необходимо где-нибудь остановиться. Сказать: «сложение заключается в прибавлении» – не значит дать определение. Все, что можно сделать, это взять за исходный пункт некоторое число конкретных примеров и сказать: «действие, которое мы сделали, называется сложением».
Читать дальше
Конец ознакомительного отрывка
Купить книгу