Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Число геометрий, совместимых с этими положениями, будет ограниченное.

Я могу даже прибавить, что если n дано, то для p можно указать высший предел.

Следовательно, если допустить возможность движения неизменяемой фигуры, то можно будет придумать лишь конечное число (и даже довольно ограниченное) геометрических систем трех измерений.

Геометрии Римана. Между тем этот результат, по-видимому, находится в противоречии с заключениями Римана, так как этот ученый построил бесчисленное множество различных геометрий (та, которой обыкновенно дают его имя, есть не более чем частный случай).

Все зависит, говорит Риман, от способа, которым определяют длину кривой. Но существует бесконечное множество способов определять эту длину, и каждый из них может сделаться точкой отправления новой геометрии. Это совершенно верно; но большинство этих определений несовместимо с движением неизменяемой фигуры, которое предполагается возможным в теореме Ли. Эти геометрии Римана, столь интересные с различных точек зрения, могут быть лишь чисто аналитическими, и они не поддаются доказательствам, которые были бы аналогичны евклидовым.

Геометрии Гильберта. Наконец, Веронезе и Гильберт придумали новые, еще более странные геометрии, которые они назвали неархимедовыми . Они построили их, устранив аксиому Архимеда, в силу которой любая данная протяженность, умноженная на целое достаточно большое число, в конечном счете превзойдет любую данную протяженность, сколь бы велика она ни была. На неархимедовой прямой существуют все точки нашей обычной геометрии, но имеются множества других, которые вставляются между ними, так что между двумя отрезками, которые геометры старой школы рассматривали как смежные, оказывается возможным поместить множество новых точек. Одним словом, неархимедовы пространства уже не являются более непрерывностью второго порядка, если применять язык предыдущей главы, они суть непрерывность третьего порядка.

О природе аксиом. Большинство математиков смотрят на геометрию Лобачевского как на простой логический курьез; но некоторые из них идут дальше. Раз возможно несколько геометрий, то достоверно ли, что наша геометрия есть истинная? Без сомнения, опыт учит нас, что сумма углов треугольника равна двум прямым; но это потому, что мы оперируем треугольниками слишком малыми; разность, по Лобачевскому, пропорциональна площади треугольника; не может ли она сделаться заметной, когда мы будем оперировать большими треугольниками или когда наши измерения сделаются более точными? Таким образом, евклидова геометрия была бы только временной геометрией.

Чтобы обсудить это мнение, мы должны сначала спросить себя, в чем состоит природа геометрических аксиом. Не являются ли они синтетическими априорными суждениями, как говорил Кант?

Будь это так, они навязывались бы нам с такой силой, что мы не могли бы ни вообразить себе положение противоположного содержания, ни основать на нем теоретическое построение. Неевклидовых геометрий не могло бы быть.

Чтобы убедиться в этом, возьмем настоящее синтетическое априорное суждение, например то, которое, как мы видели в первой главе, играет первенствующую роль: если теорема верна для числа 1 и если доказано, что раз она справедлива для n, то она верна и для n + 1; в таком случае она будет справедлива для всех положительных целых чисел .

Попытаемся затем отвлечься от этого положения и, откинув его, построить ложную арифметику по аналогии с неевклидовой геометрией. Это нам не удастся. Сначала было даже стремление рассматривать эти суждения как аналитические.

С другой стороны, обратимся снова к нашим воображаемым существам без толщины; могли ли бы мы допустить, чтобы эти существа, если бы их ум был устроен по образу нашего, приняли евклидову геометрию, которая противоречила бы всему их опыту?

Итак, не должны ли мы заключить, что аксиомы геометрии суть истины экспериментальные? Но над идеальными прямыми или окружностями не экспериментируют; это можно делать только над материальными объектами. К чему же относятся опыты, которые служили бы основанием геометрии?

Ответ ясен. Выше мы видели, что рассуждения ведутся постоянно так, как если бы геометрические фигуры были подобны твердым телам. Следовательно, вот что заимствовала геометрия у опыта: свойства твердых тел.

Свойства света и его прямолинейное распространение также были поводом, из которого вытекли некоторые предложения геометрии, в частности предложения проективной геометрии; так что с этой точки зрения можно было бы сказать, что метрическая геометрия есть изучение твердых тел, а проективная геометрия – изучение света.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x