Как найти ответ? Мы говорим уже не о 365 днях, а о тысячах дней. Каковы переменные? Вопрос Агнесс касается не дат рождения любых двух людей, а ее даты рождения, которая совпадает с датой рождения кого-либо из ее знакомых. И вот что в очередной раз усложняет задачу: дело не в том, что у нее и кого-то из ее знакомых совпадает дата рождения; дело в том, что она случайно встречается с кем-то из тех, кто родился ровно в тот же день, что и она, и узнает , что их даты рождения совпадают.
Если бы Агнесс интересовалась вычислением вероятности того, что у кого-то из ее знакомых та же дата рождения, то здесь было бы удивительно легко дать ответ. Пусть ее день рождения приходится, скажем, на 1 июля. Ее точная дата рождения для решения задачи не важна. Необходимо лишь выбрать конкретную дату или, другими словами, сформулировать задачу таким образом, чтобы в ней спрашивалось: какова вероятность того, что у кого-либо из присутствующих в зале день рождения приходится на конкретную дату? Шанс того, что один из знакомых родился, скажем, 1 июля, составляет 364/365. Вероятность того, что N ее знакомых не родились 1 июля, составляет (364/365) N . Тогда, чтобы вычислить, когда существует шанс выше, чем 1 к 1, что у N ее знакомых день рождения не в тот же день, что у нее, решим уравнение (364/365) N = 1/2 и получим N . Сделав это, находим N = 252,65. {88}Таким образом, у Агнесс будет шанс выше, чем 1 к 1, встретить человека, у которого день рождения в один день с ней, если на одной с ней конференции 253 участника. Но это все еще задача о дне рождения, а не о дате рождения. Задача Агнесс шире. Совпадение, произошедшее с Агнесс, касается даты и года ее рождения. Для простоты предположим, что возраст большинства людей, которых она встречает, находится в пределах 10 лет от ее возраста; другими словами, ±3650 дней. Чтобы иметь шанс встретить одного человека, с которым у нее совпадает дата рождения, выше, чем 1 к 1, ей потребуется не менее 5105 новых знакомых {89}. Кажется, что это довольно много встреч. Будучи активной работающей женщиной, она наверняка познакомится с 5105 новыми людьми за 5 лет – меньше одного человека в день. Но чисто теоретически давайте уменьшим ее шансы. Если нам нужно, чтобы у нее был, скажем, 10 %-ный шанс, число встреч уменьшается до 770. Тогда вопрос будет в следующем: сколько новых знакомств она заведет, скажем, за 5 лет? Кроме того, Агнесс необходимо познакомиться с 770 людьми и каким-то образом узнать о том, что у нее и у нового знакомого совпадают даты рождения.
Предположим, что она знакомится с N > 770 отдельных людей за 5 лет и в некоем подмножестве этого N случайных встреч в разговоре касаются темы дня рождения. Проблема решения всей задачи не в том, что только у одного из 770 может быть та же дата рождения, а в том, что она неумышленно узнала об этом в ходе разговора, когда речь случайно зашла о днях рождения. Каковы шансы этого? Сложность в том, чтобы оценить, насколько часто она заводит разговор о днях рождения. Положим, что в среднем за период в 10 лет в одном из 100 разговоров она касается темы дня рождения. Тогда мы должны умножить число новых знакомых на 100. Другими словами, чтобы иметь 10 %-ный шанс узнать, что один из ее знакомых родился в тот же день, что и она, ей потребовалось бы 77 000 новых встреч. Чтобы иметь шанс встретить такого человека выше 1 к 1, потребуется 510 500 встреч. Но Агнесс утверждает, что с ней это случилось дважды! Кроме того, это были не просто рабочие встречи, а скорее, торжественные мероприятия. Первой была акушерка, принимавшая у нее роды, т. е. она, следуя заведенному порядку, должна была спросить у Агнесс дату рождения. Вторая встреча произошла дюжиной лет позже, когда она ехала на лимузине встречать родителей из нью-йоркского аэропорта. По ходу разговора она сказала водителю, что родители приехали на ее пятидесятилетие. «Если это поспособствует решению, – написала она позже, – они оба были специалистами в тех областях, с которыми я ранее никогда не сталкивалась, и они не обязательно были частью (предположительно большой) группы лиц, которые могли бы быть близки мне по возрасту».
Потому при любых расчетах мы должны согласиться, что две ее встречи были делом поистине удивительным.
Что применимо к дням рождения, применимо и к дням смерти. Реальный случай: три президента – Джон Адамс, Томас Джефферсон и Джеймс Монро – умерли 4 июля. Хм… Джон Адамс и Томас Джефферсон умерли в одном и том же году – в 1826 г. Жутковато. Однако в их времена день 4 июля был особой вехой. Известно, что смерть можно приблизить или отдалить на несколько часов или дней волей человека к жизни или смерти. Так что возможно, что президенты молодой республики просто пытались продержаться до 4 июля, особенно Адамс и Джефферсон, которые дожили до 50-й годовщины подписания Декларации независимости. Потому в этой случайности есть элемент причинности. Никакого совпадения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу