Айзек Азимов - Числа - от арифметики до высшей математики

Здесь есть возможность читать онлайн «Айзек Азимов - Числа - от арифметики до высшей математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Эксмо, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Числа: от арифметики до высшей математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Числа: от арифметики до высшей математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Числа: от арифметики до высшей математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перевод числа из двоичной системы в десятеричную не составляет труда. Рассмотрим, например, выражение 11001 в двоичной системе. Оно эквивалентно (1 × 2 4) + (1 × 2 3) + (0 × 2 2) + (0 × 2 1) + (1 × 2 0), или 16 + 8 + 0 + 0 + 1, или 25, что соответствует эквиваленту, приведенному в таблице.

Этот процесс можно упростить если принять во внимание что число 2 - фото 43 Этот процесс можно упростить если принять во внимание что число 2 - фото 44

Этот процесс можно упростить, если принять во внимание, что число 2, возведенное в степень, умножается либо на 0, и тогда результат тоже будет равен нулю и его можно не учитывать, либо на 1, и тогда это просто 2, возведенное в какую-то степень.

Таким образом, мы можем проставить порядковый номер справа налево, как это показано ниже маленькими цифрами:

Числа от арифметики до высшей математики - изображение 45

Каждое маленькое число — это степень числа 2, определяемая положением цифры в числе, представленном в двоичной системе. Следует учитывать только те показатели степени, которые стоят против единиц. Показатели, стоящие против нулей, можно опускать. Используя такой подход, можно записать число 11001 как 2 4+ 2 3+ 2 0, или 16 + 8 + 1, или 25.

Большие числа, такие как 1 110 010 100 001 001, можно переводить в десятеричную систему таким же образом.

Поскольку единицам соответствуют позиции 0 3 8 10 13 14 и 15 то число - фото 46

Поскольку единицам соответствуют позиции 0, 3, 8, 10, 13, 14 и 15, то число будет равняться 2 15+ 2 14+ 2 13+ 2 10+ 2 8 + 2 3+ 2 0, или 32768 + 16384 + 8192 + 1024 + 256 + 8 + 1, или 58 633.

Обратный перевод из двоичной системы в десятеричную не очень сложен, но более длителен. Предположим, число 1562 выражено в десятеричной системе. В двоичную систему его можно перевести следующим образом:

Наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 1562, — это 2 10(или 1024). Если мы вычтем 1024 из 1562, у нас останется 538. Теперь наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 538, — это 2 9(или 512). После вычитания этой величины из 538 у нас остается 26. Ближайшее и меньшее число теперь — 2 4(или 16). После вычитания остается 10. Теперь ближайшее число — это 2 3(или 8). После вычитания остается 2 или 2 1. Таким образом, 1562 = 2 10+ 2 9+ 2 4+ 2 3+ 2 1.

Теперь надо только правильно расставить по местам показатели степени справа налево. Единицы будут стоять на 1, 3, 4, 9 и 10-й позициях. На остальных позициях мы поставим нули. Таким образом, мы получаем число 11 000 011 010, двоичный эквивалент числа 1562 в десятеричной системе.

В двоичной системе очень простые таблицы сложения и умножения:

И это весь список Таким образом в двоичной системе Правильность этих - фото 47

И это весь список.

Таким образом, в двоичной системе:

Правильность этих вычислений можно при желании проверить учитывая что числа - фото 48

Правильность этих вычислений можно, при желании, проверить, учитывая, что числа И, 110 и 1001 в двоичной системе равны соответственно 3, 6 и 9 в десятеричной системе.

Теперь представьте себе, что у вас есть счетная электронная машина с набором переключателей (например, полупроводниковых). Каждый переключатель может находиться в одной из двух позиций — «включено» (когда ток проходит через переключатель) или «выключено» (когда ток не проходит через переключатель).

Теперь предположим, что положение «включено» соответствует 1, а положение «выключено» соответствует 0. В этом случае счетную машину можно спроектировать таким образом, чтобы переключение электрического сигнала различными переключателями подчинялось правилам сложения, умножения и другим действиям с единицами и нулями в двоичной системе.

Такая машина будет так быстро производить переключение и производить вычисления с такой скоростью, что сможет выполнить за считаные секунды такой объем вычислений, на который человеку потребовалось бы не меньше месяца.

Однако, рассматривая различные системы счета, мы сильно уклонились от основной темы нашей книги. Теперь мы возвращаемся к десятеричной системе, и вся дальнейшая информация будет подана именно в десятеричной системе.

Жонглируем экспонентами

Для того чтобы четко уяснить себе, какие действия можно производить с экспоненциальными числами на основе 10, начнем работать с относительно небольшими числами, а не с такими огромными, как масса Земли, о которой шла речь в начале главы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Числа: от арифметики до высшей математики»

Представляем Вашему вниманию похожие книги на «Числа: от арифметики до высшей математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Числа: от арифметики до высшей математики»

Обсуждение, отзывы о книге «Числа: от арифметики до высшей математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x