Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Здесь есть возможность читать онлайн «Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Здесь квадрат и первый прямоугольник имеют высоту x их ширина равна - фото 58

Здесь квадрат и первый прямоугольник имеют высоту x ; их ширина равна соответственно x и a . Меньший прямоугольник имеет площадь b . По вавилонскому рецепту мы легко делим первый прямоугольник на две половины:

Два новых прямоугольника мы можем переместить и совместить с краями квадрата - фото 59

Два новых прямоугольника мы можем переместить и совместить с краями квадрата:

Получившаяся слева фигура так и просится быть дополненной до большого квадрата - фото 60

Получившаяся слева фигура так и просится быть дополненной до большого квадрата, с добавлением затененного квадрата.

Чтобы уравнение оставалось верным такой же квадрат должен быть добавлен и к - фото 61

Чтобы уравнение оставалось верным, такой же квадрат должен быть добавлен и к левой фигуре. Но теперь мы определяем площадь последней как квадрат стороны ( x + a/ 2), и геометрическая схема эквивалентна алгебраическому выражению:

x 2+ 2( a/ 2× x ) + ( a/ 2) 2= b + ( a/ 2) 2.

Поскольку левая часть – квадрат суммы, мы можем переписать это так:

( x + a/ 2) 2= b + ( a/ 2) 2,

чтобы потом извлечь из него квадратный корень:

и наконец переписать в виде что в точности повторяет вавилонский вариант - фото 62

и наконец переписать в виде

что в точности повторяет вавилонский вариант решения Ни на одной из табличек - фото 63

что в точности повторяет вавилонский вариант решения.

Ни на одной из табличек не найдено подтверждения гипотезе, что вавилоняне воспользовались этой геометрической схемой для получения своего алгоритма. Но такое объяснение не лишено смысла, так как косвенно подтверждается схемами, изображенными на других табличках.

Аль-джабр

Слово «алгебра» происходит от арабского «аль-джабр» – термина, использованного Мухаммадом ибн Мусой аль-Хорезми, ставшим известным в 820 г. В его работе «Краткая книга об исчислении аль-джабры и аль-мукабалы» изложены основные методы решения уравнений с неизвестными.

Аль-Хорезми использует слова, а не символы, но его методы узнаваемы и практически не отличаются от тех, которым нас учат сегодня. «Аль-джабр» означает «восполнение равных количеств к обеим сторонам уравнения». Так, мы начинаем:

x – 3 = 5

и выводим, что

x = 8.

Фактически мы делаем свой вывод, прибавляя по 3 к каждой из сторон. «Аль-мукабала» имеет два смысла. Вот его особый смысл: «вычитание равных количеств из обеих сторон уравнения», чем мы и занимаемся, переходя от

x + 3 = 5

к ответу

x = 2.

Но есть и более общий смысл: «восстановление», т. е. приведение подобных членов в обеих частях уравнения. Аль-Хорезми дает общие правила для шести видов уравнений, с помощью которых можно решить все линейные и квадратные уравнения. В его работах представлены идеи элементарной алгебры, но без использования символов.

Кубические уравнения

Итак, вавилоняне умели решать квадратные уравнения, и их метод был по существу таким же, какому нас учат сегодня. Алгебраически самое сложное в нем – квадратный корень, и присутствует несколько стандартных арифметических действий (сложение, вычитание, умножение и деление). Ожидаемым следующим шагом становятся кубические уравнения, включающие неизвестное в кубе. Их мы пишем так:

аx 3+ bx 2+ cx + d = 0,

где x – неизвестное, а коэффициенты a, b и c – известные. Но до появления идеи отрицательных чисел математики классифицировали кубические уравнения по нескольким отдельным видам, так что, например, выражения x 3+ 3 x = 7 и x 3 – 3 x = 7 расценивались как совершенно разные, и для них существовали свои методы решения.

ЧИСЛА ФИБОНАЧЧИ

Третья часть «Книги абака» содержит задачу, автором которой, скорее всего, был сам Леонардо: «Некто поместил пару кроликов в место, со всех сторон окруженное стеною. Со второго месяца после своего рождения кролики начинают спариваться и каждый месяц производить новую пару кроликов; кролики никогда не умирают. Сколько пар кроликов будет через год?»

Эта каверзная задача приводит к любопытной последовательности чисел, получившей широкую известность:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Представляем Вашему вниманию похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Обсуждение, отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x