ЛЕНТА МЁБИУСА
Топология может преподнести сюрпризы. Самый известный из них – лента Мёбиуса (лист Мёбиуса). Чтобы ее получить, нужно взять длинную полоску бумаги и склеить ее противоположные концы, повернув один из них вполоборота. Без поворота мы получим обычный цилиндр. Различие между этими двумя поверхностями станет понятно, если мы попробуем их покрасить. У цилиндра мы легко сможем выкрасить наружную поверхность в красный цвет, а внутреннюю в синий. Но если вы начнете красить красным одну сторону ленты Мёбиуса и будете поступательно двигаться от окрашенной части к неокрашенной, окажется, что вы выкрасили в красный цвет всю ленту. Из-за полуоборота внутренняя поверхность соединилась с наружной.
Еще одно отличие проявится, если вы разрежете ленту пополам вдоль всей ее длины. Да, она разделится на две части, но они останутся связанными друг с другом.
Проблески общей теории первым заметил Гаусс, время от времени пытавшийся привлечь внимание коллег к необходимости некой теоретической базы для геометрических свойств схем. Он также изобрел новый топологический инвариант, который мы сейчас называем коэффициентом зацепления , для исследований магнетизма. Это число определяет, как одна замкнутая кривая обкручивается вокруг другой. Гаусс вывел формулу для подсчета коэффициента зацепления на основе аналитических выражений, описывающих кривые. Такой же инвариант, число оборотов (или индекс точки) для замкнутой кривой по отношению к точке, был использован в одном из доказательств Основной теоремы алгебры.
Наибольший вклад в становление топологии внесли студент Гаусса Иоганн Листинг и ассистент Август Мёбиус. Листинг учился у Гаусса в 1834 г., и в его труде «Предварительные исследования по топологии» впервые используется термин «топология». Сам Листинг сначала применял выражение «геометрия позиций», но его уже пустил в обиход Карл фон Штаудт для описания проективной геометрии, и Листингу пришлось искать другой вариант. Кроме того, Листинг искал способ обобщения формулы Эйлера для многогранников.
Мёбиус сумел четко обозначить важную роль непрерывных преобразований. Его нельзя было назвать самым продуктивным ученым, но он отличался чрезвычайно кропотливым подходом к любой исследуемой им теме. В частности, именно он обратил внимание на то, что у поверхности отнюдь не всегда есть две четко разделенные стороны, приведя в пример свою знаменитую ленту. Эту поверхность независимо друг от друга открыли и Мёбиус, и Листинг в 1858 г. Листинг опубликовал свое открытие в книге «Der Census Räumlicher Complexe» («Описание пространственной сложности»), а Мёбиус – в статье об исследовании свойств поверхностей.
Долгое время идеи Эйлера о многогранниках оставались в стороне от основных направлений математической мысли, но в какой-то момент несколько маститых ученых открыли новый подход к геометрии, который они назвали тогда analysis situs , т. е. анализ размещений. Под этим подразумевалась качественная теория форм как самостоятельная дисциплина, дополняющая более привычную тогда количественную теорию длин, углов, площадей и объемов. Этот взгляд делался всё более популярным по мере появления новых открытий в традиционных исследованиях основных направлений математики. Ключевым шагом стало открытие связей между комплексным анализом и геометрией поверхностей, сделанное Риманом.
Очевидный способ осмысления комплексной функции f состоит в том, чтобы интерпретировать ее как отображение из одной комплексной плоскости в другую. Базовая формула для такой функции, w = f ( z ), предлагает нам взять любое комплексное число z , применить к нему f и получить другое комплексное число w , связанное с z . Геометрически z принадлежит одной комплексной плоскости, а w – фактически второй, независимой копии комплексной плоскости.
Но эта точка зрения была не особо популярна среди ученых, и причиной тому стали так называемые сингулярности. Комплексные функции часто имеют такие интересные точки, в которых их регулярное, нормальное поведение становится странным. Например, функция f ( z ) = 1/ z ведет себя очень предсказуемо во всех точках, за исключением 0. Когда z = 0, значение функции равно 1/0, что не имеет смысла для обычного комплексного числа, хотя с помощью некоторой доли воображения его можно представить как бесконечность (символ ∞.). Если z слишком близко подойдет к 0, 1/ z окажется особенно большим. Бесконечность в этом смысле не число – это всего лишь термин, описывающий численный процесс: число становится сколь угодно большим. Гаусс уже отметил, что бесконечности такого рода создают новый тип поведения при комплексном интегрировании. Это оказалось существенным.
Читать дальше